リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Polarity switching of ovarian cancer cell clusters via SRC family kinase is involved in the peritoneal dissemination」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Polarity switching of ovarian cancer cell clusters via SRC family kinase is involved in the peritoneal dissemination

Kawata, Mayuko Kondo, Jumpei Onuma, Kunishige Ito, Yu Yokoi, Takeshi Hamanishi, Junzo Mandai, Masaki Kimura, Tadashi Inoue, Masahiro 京都大学 DOI:10.1111/cas.15493

2022.10

概要

Peritoneal dissemination is a predominant pattern of metastasis in patients with advanced ovarian cancer. Despite recent progress in the management strategy, peritoneal dissemination remains a determinant of poor ovarian cancer prognosis. Using various histological types of patient-derived ovarian cancer organoids, the roles of the apicobasal polarity of ovarian cancer cell clusters in peritoneal dissemination were studied. First, it was found that both ovarian cancer tissues and ovarian organoids showed apicobasal polarity, where zonula occludens-1 (ZO-1) and integrin beta 4 (ITGB4) served as markers for apical and basal sides, respectively. The organoids in suspension culture, as a model of cancer cell cluster floating in ascites, showed apical-out/basal-in polarity status, while once embedded in extracellular matrix (ECM), the organoids switched their polarity to apical-in/basal-out. This polarity switch was accompanied by the SRC kinase family (SFK) phosphorylation and was inhibited by SFK inhibitors. SFK inhibitors abrogated the adherence of the organoids onto the ECM-coated plastic surface. When the organoids were seeded on a mesothelial cell layer, they cleared and invaded mesothelial cells. In vivo, dasatinib, an SFK inhibitor, suppressed peritoneal dissemination of ovarian cancer organoids in immunodeficient mice. These results suggest SFK-mediated polarity switching is involved in peritoneal metastasis. Polarity switching would be a potential therapeutic target for suppressing peritoneal dissemination in ovarian cancer.

この論文で使われている画像

参考文献

1. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evo- lution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280-304.

2. Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9(6):415-428.

3. Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284-296.

4. Motohara T, Masuda K, Morotti M, et al. An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene. 2019;38(16):2885-2898.

5. Farsinejad S, Cattabiani T, Muranen T, Iwanicki M. Ovarian cancer dissemination—a cell Biologist's perspective. Cancer. 2019;11(12):1957.

6. van Baal JOAM, van Noorden CJF, Nieuwland R, et al. Development of peritoneal carcinomatosis in epithelial ovarian cancer: a review. J Histochem Cytochem. 2018;66(2):67-83.

7. Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25(5):838-849.

8. Nanki Y, Chiyoda T, Hirasawa A, et al. Patient-derived ovarian can- cer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Sci Rep. 2020;10(1):12581.

9. Kondo J, Inoue M. Application of cancer organoid model for drug screening and personalized therapy. Cell. 2019;8(5):470.

10. Kondo J, Endo H, Okuyama H, et al. Retaining cell–cell contact en- ables preparation and culture of spheroids composed of pure pri- mary cancer cells from colorectal cancer. Proc Natl Acad Sci USA. 2011;108(15):6235-6240.

11. Okuyama H, Kondo J, Sato Y, et al. Dynamic change of polarity in primary cultured spheroids of human colorectal adenocarcinoma and its role in metastasis. Am J Pathol. 2016;186(4):899-911.

12. Onuma K, Sato Y, Okuyama H, et al. Aberrant activation of rho/ ROCK signaling in impaired polarity switching of colorectal micro- papillary carcinoma. J Pathol. 2021;255(1):84-94.

13. Yoshida T, Okuyama H, Nakayama M, et al. Dynamic change in p63 protein expression during implantation of urothelial cancer clus- ters. Neoplasia. 2015;17(7):574-585.

14. Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539-551.

15. Kakiuchi T, Takahara T, Kasugai Y, et al. Modeling mesothelioma utilizing human mesothelial cells reveals involvement of phos- pholipase-C beta 4 in YAP-active mesothelioma cell proliferation. Carcinogenesis. 2016;37(11):1098-1109.

16. Sher I, Adham SA, Petrik J, Coomber BL. Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int J Cancer. 2009;124(3):553-561.

17. Al Habyan S, Kalos C, Szymborski J, McCaffrey L. Multicellular detachment generates metastatic spheroids during intra- abdominal dissemination in epithelial ovarian cancer. Oncogene. 2018;37(37):5127-5135.

18. Gao Q, Yang Z, Xu S, et al. Heterotypic CAF-tumor spheroids pro- mote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216(3):688-703.

19. Zhang Q, Yu S, Lam MMT, et al. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 2019;38(1):116.

20. Sun Y, Li S, Yang L, et al. CDC25A facilitates chemo-resistance in ovarian cancer multicellular spheroids by promoting E- cadherin expression and arresting cell cycles. J Cancer. 2019;10(13):2874-2884.

21. Liao J, Qian F, Tchabo N, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metasta- sis and chemotherapy resistance through hypoxia-resistant metab- olism. PLoS One. 2014;9(1):e84941.

22. Casey RC, Burleson KM, Skubitz KM, et al. Beta 1-integrins regu- late the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 2001;159(6):2071-2080.

23. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12(6):7869-7876.

24. Strobel T, Cannistra SA. Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol. 1999;73(3):362-367.

25. Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR, Skubitz APN. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 2004;93(1):170-181.

26. Yoshihara M, Yamakita Y, Kajiyama H, et al. Filopodia play an im- portant role in the trans-mesothelial migration of ovarian cancer cells. Exp Cell Res. 2020;392(2):112011.

27. Thibault B, Jean-Claude B. Dasatinib + gefitinib, a non platinum- based combination with enhanced growth inhibitory, anti- migratory and anti-invasive potency against human ovarian cancer cells. J Ovarian Res. 2017;10(1):31.

28. Manek R, Pakzamir E, Mhawech-Fauceglia P, et al. Targeting Src in endometriosis-associated ovarian cancer. Oncogenesis. 2016;5(8):e251.

29. Kadife E, Chan E, Luwor R, Kannourakis G, Findlay J, Ahmed N. Paclitaxel-induced Src activation is inhibited by Dasatinib treat- ment, independently of cancer stem cell properties, in a mouse model of ovarian cancer. Cancer. 2019;11(2):243.

30. Schilder RJ, Brady WE, Lankes HA, et al. Phase II evaluation of da- satinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2012;127(1):70-74.

31. McNeish IA, Ledermann JA, Webber L, et al. A randomised, placebo- controlled trial of weekly paclitaxel and saracatinib (AZD0530) in platinum-resistant ovarian, fallopian tube or primary peritoneal cancer. Ann Oncol. 2014;25(10):1988-1995.

32. Lee JW, Park YA, Cho YJ, et al. The effect of surgical wound on ovarian carcinoma growth in an animal model. Anticancer Res. 2013;33(8):3177-3184.

33. Pasquier J, Vidal F, Hoarau-Véchot J, et al. Surgical peritoneal stress creates a pro-metastatic niche promoting resistance to apoptosis via IL-8. J Transl Med. 2018;16(1):271.

34. Manvelyan V, Khemarangsan V, Huang KG, Adlan AS, Lee CL. Port- site metastasis in laparoscopic gynecological oncology surgery: an overview. Gynecol Minim Invasive Ther. 2016;5(1):1-6.

35. Ataseven B, Grimm C, Harter P, et al. Prognostic impact of port-site metastasis after diagnostic laparoscopy for epithelial ovarian can- cer. Ann Surg Oncol. 2016;23(5):834-840.

36. Mutsaers SE, Birnie K, Lansley S, Herrick SE, Lim CB, Prêle CM. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol. 2015;6:113.

37. Kenny HA, Chiang CY, White EA, et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest. 2014;124(10):4614-4628.

38. Niedbala MJ, Crickard K, Bernacki RJ. Interactions of human ovar- ian tumor cells with human mesothelial cells grown on extracellular matrix: an in vitro model system for studying tumor cell adhesion and invasion. Exp Cell Res. 1985;160(2):499-513.

39. Iwanicki MP, Davidowitz RA, Ng MR, et al. Ovarian cancer spher- oids use myosin-generated force to clear the mesothelium. Cancer Discov. 2011;1(2):144-157.

参考文献をもっと見る