リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MEK inhibition suppresses metastatic progression of KRAS-mutated gastric cancer (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MEK inhibition suppresses metastatic progression of KRAS-mutated gastric cancer (本文)

山崎, 淳太郎 慶應義塾大学

2022.03.23

概要

Metastatic progression of tumors is driven by genetic alterations and tumor-stroma interaction. To elucidate the mechanism underlying the oncogene-induced gastric tumor progression, we have developed an organoid-based model of gastric cancer from GAstric Neoplasia (GAN) mice, which express Wnt1 and the enzymes COX2 and microsomal prostaglandin E synthase 1 in the stomach. Both p53 knockout (GAN- p53KO) organoids and KRASG12V-expressing GAN-p53KO (GAN-KP) organoids were generated by genetic manipulation of GAN mouse-derived tumor (GAN wild-type [WT]) organoids. In contrast with GAN-WT and GAN-p53KO organoids, which mani- fested Wnt addiction, GAN-KP organoids showed a Wnt-independent phenotype and the ability to proliferate without formation of a Wnt-regulated three-dimensional epi- thelial architecture. After transplantation in syngeneic mouse stomach, GAN-p53KO cells formed only small tumors, whereas GAN-KP cells gave rise to invasive tumors associated with the development of hypoxia as well as to liver metastasis. Spatial tran- scriptomics analysis suggested that hypoxia signaling contributes to the metastatic progression of GAN-KP tumors. In particular, such analysis identified a cluster of stro- mal cells located at the tumor invasive front that expressed genes related to hypoxia signaling, angiogenesis, and cell migration. These cells were also positive for phospho- rylated extracellular signal-regulated kinase (ERK), suggesting that mitogen-activated protein kinase (MAPK) signaling promotes development of both tumor and microenvi- ronment. The MEK (MAPK kinase) inhibitor trametinib suppressed the development of GAN-KP gastric tumors, formation of a hypoxic microenvironment, tumor angiogen- esis, and liver metast asis. Our findings therefore establish a rationale for application of trametinib to suppress metastatic progression of KRAS-mutated gastric cancer.

この論文で使われている画像

参考文献

1. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31-49.

2. Cancer genome atlas research N. Comprehensive molecular char- acterization of gastric adenocarcinoma. Nature. 2014;513:202-209.

3. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49-53.

4. Fenoglio-Preiser CM, Wang J, Stemmermann GN, Noffsinger A. TP53 and gastric carcinoma: a review. Hum Mutat.2003;21:258-270.

5. Waters AM, Der CJKRAS. The critical driver and therapeu- tic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2018;8:a031435.

6. Liu ZM, Liu LN, Li M, Zhang QP, Cheng SH, Lu S. Mutation detection of KRAS by high-resolution melting analysis in Chinese with gastric cancer. Oncol Rep. 2009;22:515-520.

7. Fu XH, Chen ZT, Wang WH, et al. KRAS G12V mutation is an ad- verse prognostic factor of Chinese gastric cancer patients. J Cancer. 2019;10:821-828.

8. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985-999.

9. Merenda A, Fenderico N, Maurice MM. Wnt signaling in 3D: recent advances in the applications of intestinal organoids. Trends Cell Biol. 2020;30:60-73.

10. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer.2018;18:407-418.

11. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self- renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25-36.

12. Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148:126-136.

13. Oshima H, Oguma K, Du YC, Oshima M. Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci. 2009;100:1779-1785.

14. Poh AR, O'Donoghue RJ, Ernst M, Putoczki TL. Mouse mod- els for gastric cancer: matching models to biological questions. J Gastroenterol Hepatol. 2016;31:1257-1272.

15. Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74:2630-2641.

16. Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387-400.

17. Ishimoto T, Oshima H, Oshima M, et al. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prosta- glandin E2 in gastric tumorigenesis. Cancer Sci. 2010;101:673-678.

18. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006;131:1086-1095.

19. Seishima R, Wada T, Tsuchihashi K, et al. Ink4a/Arf-dependent loss of parietal cells induced by oxidative stress promotes CD44-dependent gastric tumorigenesis. Cancer Prev Res (Phila). 2015;8:492-501.

20. Okazaki S, Shintani S, Hirata Y, et al. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget. 2018;9:33832-33843.

21. Motohara T, Masuko S, Ishimoto T, et al. Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis. 2011;32:1597-1606.

22. Weis VG, Petersen CP, Mills JC, Tuma PL, Whitehead RH, Goldenring JR. Establishment of novel in vitro mouse chief cell and SPEM cul- tures identifies MAL2 as a marker of metaplasia in the stomach. Am J Physiol Gastrointest Liver Physiol. 2014;307:G777-792.

23. Noguchi TK, Ninomiya N, Sekine M, et al. Generation of stom- ach tissue from mouse embryonic stem cells. Nat Cell Biol. 2015;17:984-993.

24. Schlaermann P, Toelle B, Berger H, et al. A novel human gastric pri- mary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2016;65:202-213.

25. Fischer AS, Sigal M. The role of wnt and R-spondin in the stomach during health and disease. Biomedicines. 2019;7(2):44.

26. Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614-620.

27. Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154:515-523.

28. Hofmann M, Rudy W, Günthert U, et al. A link between ras and metastatic behavior of tumor cells: ras induces CD44 promoter ac- tivity and leads to low-level expression of metastasis-specific vari- ants of CD44 in CREF cells. Cancer Res. 1993;53:1516-1521.

29. Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14:777-783.

30. Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78-82.

31. Maniatis S, Äijö T, Vickovic S, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019;364:89-93.

32. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38-47.

33. Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regu- lators of metastasis. Clin Cancer Res. 2010;16:5928-5935.

34. Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharma- cokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17:989-1000.

35. Yamaguchi T, Kakefuda R, Tajima N, Sowa Y, Sakai T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibi- tor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol. 2011;39:23-31.

36. Wagle MC, Kirouac D, Klijn C, et al. A transcriptional MAPK path- way activity score (MPAS) is a clinically relevant biomarker in multi- ple cancer types. NPJ Precis Oncol. 2018;2:7.

37. Eustace A, Mani N, Span PN, et al. A 26-gene hypoxia signature pre- dicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res. 2013;19:4879-4888.

38. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med (Berl). 2007;85:1301-1307.

39. Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer. 2021;21:510-525.

40. Kim MA, Lee HS, Lee HE, Kim JH, Yang HK, Kim WH. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology. 2009;54:442-451.

41. Oh SC, Sohn BH, Cheong JH, et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun. 2018;9:1777.

42. Singh A, Greninger P, Rhodes D, et al. A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15:489-500.

43. Shao DD, Xue W, Krall EB, et al. KRAS and YAP1 converge to regu- late EMT and tumor survival. Cell. 2014;158:171-184.

参考文献をもっと見る