リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice (本文)

春日, 章良 慶應義塾大学

2021.03.23

概要

Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes in- trahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)–positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, in- dicating that the manipulated cells correspond to BTC–initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from pri- mary tumors formed organoids in three-dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial-mesenchymal transition (EMT)– related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell char- acteristics, stemness, and tumorigenic activity of BTC–initiating cells.

この論文で使われている画像

参考文献

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.

2. Patel T. Worldwide trends in mortality from biliary tract malignan-cies. BMC Cancer. 2002;2:10.

3. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcit- abine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273-1281.

4. Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003-1010.

5. Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 2000;47:721-727.

6. Sia D, Tovar V, Moeini A, Llovet JM. Intrahepatic cholangiocar- cinoma: pathogenesis and rationale for molecular therapies. Oncogene. 2013;32:4861-4870.

7. Xu X, Kobayashi S, Qiao W, et al. Induction of intrahepatic cholan- giocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Investig. 2006;116:1843-1852.

8. O'Dell MR, Huang JL, Whitney-Miller CL, et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. Can Res. 2012;72:1557-1567.

9. Nakagawa H, Suzuki N, Hirata Y, et al. Biliary epithelial injury- induced regenerative response by IL-33 promotes cholangio- carcinogenesis from peribiliary glands. Proc Natl Acad Sci USA. 2017;114:E3806-E3815.

10. Ikenoue T, Terakado Y, Nakagawa H, et al. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion. Sci Rep. 2016;6:23899.

11. Cristinziano G, Porru M, Lamberti D, et al. FGFR2 fusion protein- driven mouse models of intrahepatic cholangiocarcinoma un- veil a necessary role for Erk signaling. bioRxiv. 2020. https://doi. org/10.1101/2020.05.20.106104

12. Ochiai M, Yoshihara Y, Maru Y, et al. Kras-driven heterotopic tumor development from hepatobiliary organoids. Carcinogenesis. 2019;40:1142–1152. https://doi.org/10.1093/carcin/bgz024

13. Saborowski A, Wolff K, Spielberg S, et al. Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro. Hepatol Commun. 2019;3:423-436.

14. Erlangga Z, Wolff K, Poth T, et al. Potent antitumor activity of lipo- somal irinotecan in an organoid- and CRISPR-Cas9-based murine model of gallbladder cancer. Cancers. 2019;11(12):1904.

15. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262-265.

16. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415-418.

17. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of ep- ithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 2011;141:1762-1772.

18. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self- renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25-36.

19. Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247-250.

20. Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708-2721.

21. Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299-312.

22. Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59:1617-1626.

23. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver devel- opment, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561-574.

24. Schmelzer E, Zhang L, Bruce A, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007;204:1973-1987.

25. Sato R, Semba T, Saya H, Arima Y. Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells. 2016;34:1997-2007.

26. Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Investig. 2013;123:1911-1918.

27. Sugihara E, Saya H. Complexity of cancer stem cells. Int J Cancer. 2013;132:1249-1259.

28. Tamase A, Muraguchi T, Naka K, et al. Identification of tumor- initiating cells in a highly aggressive brain tumor using promoter activ- ity of nucleostemin. Proc Natl Acad Sci USA. 2009;106:17163-17168.

29. Kitamura T, Koshino Y, Shibata F, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional ge- nomics. Exp Hematol. 2003;31:1007-1014.

30. Harigai R, Sakai S, Nobusue H, et al. Tranilast inhibits the expres- sion of genes related to epithelial-mesenchymal transition and an- giogenesis in neurofibromin-deficient cells. Sci Rep. 2018;8:6069.

31. Kokuryo T, Yokoyama Y, Nagino M. Recent advances in cancer stem cell research for cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2012;19:606-613.

32. Arima Y, Hayashi H, Sasaki M, et al. Induction of ZEB proteins by inactivation of RB protein is key determinant of mesenchymal phe- notype of breast cancer. J Biol Chem. 2012;287:7896-7906.

33. Manohar R, Komori J, Guzik L, et al. Identification and expansion of a unique stem cell population from adult mouse gallbladder. Hepatology. 2011;54:1830-1841.

34. DiPaola F, Shivakumar P, Pfister J, Walters S, Sabla G, Bezerra JA. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell markers and proliferate after in- jury in mice. Hepatology. 2013;58:1486-1496.

35. Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pan- creatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology. 2016;64:277-286.

36. Fan B, Malato Y, Calvisi DF, et al. Cholangiocarcinomas can origi- nate from hepatocytes in mice. J Clin Investig. 2012;122:2911-2915.

37. Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Investig. 2012;122:3914-3918.

38. Guest RV, Boulter L, Kendall TJ, et al. Cell lineage tracing re- veals a biliary origin of intrahepatic cholangiocarcinoma. Can Res. 2014;74:1005-1010.

39. Shiao MS, Chiablaem K, Charoensawan V, Ngamphaiboon N, Jinawath N. Emergence of intrahepatic cholangiocarcinoma: how high-throughput technologies expedite the solutions for a rare can- cer type. Front Genet. 2018;9:309.

40. Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treat- ments that target EMT signaling. Dev Dyn. 2018;247:462-472.

41. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial- mesenchymal transition. Sci Sign. 2014;7:re8.

42. Vaquero J, Guedj N, Claperon A, Nguyen Ho-Bouldoires TH, Paradis V, Fouassier L. Epithelial-mesenchymal transition in chol- angiocarcinoma: From clinical evidence to regulatory networks. J Hepatol. 2017;66:424-441.

43. Nitta T, Mitsuhashi T, Hatanaka Y, et al. Prognostic significance of epithelial-mesenchymal transition-related markers in extrahepatic cholangiocarcinoma: comprehensive immunohistochemical study using a tissue microarray. Br J Cancer. 2014;111:1363-1372.

44. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241-253.

45. Shamir ER, Ewald AJ. Three-dimensional organotypic culture: ex- perimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15:647-664.

46. Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424-1435.

47. Saito Y, Nakaoka T, Muramatsu T, et al. Induction of differentiation of intrahepatic cholangiocarcinoma cells to functional hepatocytes using an organoid culture system. Sci Rep. 2018;8:2821.

48. van de Wetering M, Francies HE, Francis JM, et al. Prospective der- ivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933-945.

49. Nanki K, Toshimitsu K, Takano A, et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric car- cinogenesis. Cell. 2018;174(4):856-869.e17.

50. Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22(3):454-467.e6.

51. Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827-838.

52. Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 2016;531:110-113.

53. Merrick BA, Phadke DP, Bostrom MA, et al. Arsenite malignantly transforms human prostate epithelial cells in vitro by gene amplifi- cation of mutated KRAS. PLoS One. 2019;14:e0215504.

54. Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of can- cer. Cell. 2018;173:291–304.e6.

55. Huang WC, Tsai CC, Chan CC. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma. J Formos Med Assoc. 2017;116:464-468.

参考文献をもっと見る