リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Exosomes derived from synovial fibroblasts from patients with rheumatoid arthritis promote macrophage migration that can be suppressed by miR-124-3p」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Exosomes derived from synovial fibroblasts from patients with rheumatoid arthritis promote macrophage migration that can be suppressed by miR-124-3p

Nakamachi, Yuji Uto, Kenichi Hayashi, Shinya Okano, Takaichi Morinobu, Akio Kuroda, Ryosuke Kawano, Seiji Saegusa, Jun 神戸大学

2023.04

概要

Objectives: Exosomes are potent vehicles for intercellular communication. Rheumatoid arthritis (RA) is a chronic systemic disease of unknown etiology. Local administration of miR-124 precursor to rats with adjuvant-induced arthritis suppresses systemic arthritis and bone destruction. Thus, exosomes may be involved in this disease. We aimed to determine the role of exosomes in the pathology of RA. Methods: Fibroblast-like synoviocytes (FLS) were collected from patients with RA and osteoarthritis (OA). miR-124-3p mimic was transfected into the RA FLS (RA miR-124 FLS). Exosomes were collected from the culture medium by ultracentrifugation. Macrophages were produced from THP-1 cells. MicroRNAs in the exosomes were analyzed using real-time PCR. Proteomics analysis was performed using nanoscale liquid chromatography-tandem mass spectrometry. Macrophage migration was evaluated using a Transwell migration assay. SiRNA was used to knockdown proteins of interest. Results: MicroRNAs in the RA FLS, RA miR-124 FLS, and OA FLS exosomes were similar. Proteomics analysis revealed that pentraxin 3 (PTX3) levels were higher in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes, and proteasome 20S subunit beta 5 (PSMB5) levels were lower in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes. The RA FLS exosomes promoted and the RA miR-124 FLS exosomes suppressed macrophage migration. PTX3-silenced RA FLS exosomes suppressed and PSMB5-silenced OA FLS exosomes promoted macrophage migration. Conclusions: RA FLS exosomes promote macrophage migration via PTX3 and PSMB5, and miR-124-3p suppresses this migration.

この論文で使われている画像

参考文献

˜ ez-M´

[1] M. Y´

an

o, P.R. Siljander, Z. Andreu, A.B. Zavec, F.E. Borr`

as, E.I. Buzas, et al., Biological properties of extracellular vesicles and their physiological functions,

J. Extracell. Vesicles 4 (2015), 27066. https://doi.org/10.3402/jev.v4.27066.

˜ ez, A. Sanz-Garcia, T. Visakorpi, C. Escobedo-Lucea, P. Siljander, A. Ayuso-Sacido, M. Yliperttula, Different gDNA content in the subpopulations of

[2] E. L´

azaro-Ib´

an

prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes, Prostate 74 (2014) 1379–1390, https://doi.org/10.1002/pros.22853.

[3] B. Mateescu, E.J. Kowal, B.W. van Balkom, S. Bartel, S.N. Bhattacharyya, E.I. Buz´

as, et al., Obstacles and opportunities in the functional analysis of extracellular

vesicle RNA – an ISEV position paper, J. Extracell. Vesicles 6 (2017), 1286095. https://doi.org/10.1080/20013078.2017.1286095.

[4] C. Subra, K. Laulagnier, B. Perret, M. Record, Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies, Biochimie 89 (2007) 205–212.

https://doi.org/10.1016/j.biochi.2006.10.014.

[5] J. Kowal, M. Tkach, C. Th´

ery, Biogenesis and secretion of exosomes, Curr. Opin. Cell Biol. 29 (2014) 116–125. https://doi.org/10.1016/j.ceb.2014.05.004.

[6] C. Th´

ery, M. Ostrowski, E. Segura, Membrane vesicles as conveyors of immune responses, Nat. Rev. Immunol. 9 (2009) 581–593, https//doi:10.1038/nri2567.

[7] S. Gurunathan, M.H. Kang, M. Jeyaraj, M. Qasim, J.H. Kim, Review of the isolation, characterization, biological function, and multifarious therapeutic

approaches of exosomes, Cells 8 (2019) 307. https://doi.org/10.3390/cells8040307.

[8] E. van der Pol, A.N. B¨

oing, P. Harrison, A. Sturk, R. Nieuwland, Classification, functions, and clinical relevance of extracellular vesicles, Pharmacol. Rev. 64

(2012) 676–705.

[9] C. Th´

ery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function, Nat. Rev. Immunol. 2 (2002) 569–579. https://doi.org/10.1038/nri855.

[10] A. Hoshino, B. Costa-Silva, T.L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, et al., Tumour exosome integrins determine organotropic metastasis, Nature

527 (2015) 329–335. https://doi.org/10.1038/nature15756.

[11] G.S. Firestein, Evolving concepts of rheumatoid arthritis, Nature 423 (2003) 356–361. https://doi.org/10.1038/nature01661.

[12] E. Siouti, E. Andreakos, The many facets of macrophages in rheumatoid arthritis, Biochem. Pharmacol. 165 (2019) 152–169. https://doi.org/10.1016/j.bcp.

2019.03.029.

[13] D. Mulherin, O. Fitzgerald, B. Bresnihan, Synovial tissue macrophage populations and articular damage in rheumatoid arthritis, Arthritis Rheum. 39 (1996)

115–124. https://doi.org/10.1002/art.1780390116.

[14] P.P. Tak, T.J.M. Smeets, M.R. Daha, P.M. Kluin, K.A. Meijers, R. Brand, et al., Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in

relation to local disease activity, Arthritis Rheum. 40 (1997) 217–225. https://doi.org/10.1038/nature01661.

[15] N.A. Athanasou, Synovial macrophages, Ann. Rheum. Dis. 54 (1995) 392–394. https://doi.org/10.1136/ard.54.5.392.

[16] I.A. Udalova, A. Mantovani, M. Feldmann, Macrophage heterogeneity in the context of rheumatoid arthritis, Nat. Rev. Rheumatol. 12 (2016) 472–485. https://

doi.org/10.1038/nrrheum.2016.91.

[17] Y. Ding, L. Wang, H. Wu, Q. Zhao, S. Wu, Exosomes derived from synovial fibroblasts under hypoxia aggravate rheumatoid arthritis by regulating Treg/Th17

balance, Exp. Biol. Med. 245 (2020) 1177–1186. https://doi.org/10.1177/1535370220934736.

[18] Y. Nakamachi, S. Kawano, M. Takenokuchi, K. Nishimura, Y. Sakai, T. Chin, et al., MicroRNA-124a is a key regulator of proliferation and monocyte

chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis, Arthritis Rheum. 60 (2009) 1294–1304. https://doi.

org/10.1002/art.24475.

[19] Y. Nakamachi, K. Ohnuma, K. Uto, Y. Noguchi, J. Saegusa, S. Kawano, MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats, Ann. Rheum.

Dis. 75 (2016) 601–608. https://doi.org/10.1136/annrheumdis-2014-206417.

[20] D. Aletaha, T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham 3rd, et al., 2010 rheumatoid arthritis classification criteria: an American College of

Rheumatology/European League against Rheumatism collaborative initiative, Arthritis Rheum. 62 (2010) 2569–2581. https://doi.org/10.1002/art.27584.

[21] R. Altman, E. Asch, D. Bloch, G. Bole, D. Borenstein, K. Brandt, et al., Development of criteria for the classification and reporting of osteoarthritis: classification

of osteoarthritis of the knee, Arthritis Rheum. 29 (1986) 1039–1049. https://doi.org/10.1002/art.1780290816.

[22] Y. Nakamachi, M. Koshiba, T. Nakazawa, S. Hatachi, R. Saura, M. Kurosaka, et al., Specific increase in enzymatic activity of adenosine deaminase 1 in

rheumatoid synovial fibroblasts, Arthritis Rheum. 48 (2003) 668–674. https://doi.org/10.1002/art.10956.

[23] Z.H. Li, Y. Si, G. Xu, X.M. Chen, H. Xiong, L. Lai, et al., High-dose PMA with RANKL and MCSF induces THP-1 cell differentiation into human functional

osteoclasts in vitro, Mol. Med. Rep. 16 (2017) 8380–8384. https://doi.org/10.3892/mmr.2017.7625.

[24] W. Nakai, T. Yoshida, D. Diez, Y. Miyatake, T. Nishibu, N. Imawaka, et al., A novel affinity-based method for the isolation of highly purified extracellular

vesicles, Sci. Rep. 6 (2016), 33935. https://doi.org/10.1038/srep33935.

[25] M. Genin, F. Clement, A. Fattaccioli, M. Raes, C. Michiels, M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells

to etoposide, BMC Cancer 15 (2015) 577. https://doi.org/10.1186/s12885-015-1546-9.

[26] L.A. Mulcahy, R.C. Pink, D.R.F. Carter, Routes and mechanisms of extracellular vesicle uptake, J. Extracell. Vesicles 3 (2014). https://doi.org/10.3402/jev.v3.

24641.

10

Heliyon 9 (2023) e14986

Y. Nakamachi et al.

[27] T. Tian, Y.L. Zhu, F.H. Hu, Y.Y. Wang, N.P. Huang, Z.D. Xiao, Dynamics of exosome internalization and trafficking, J. Cell. Physiol. 228 (2013) 1487–1495.

https://doi.org/10.1002/jcp.24304.

[28] D. Feng, W.L. Zhao, Y.Y. Ye, X.C. Bai, R.Q. Liu, L.F. Chang, et al., Cellular internalization of exosomes occurs through phagocytosis, Traffic 11 (2010) 675–687.

https://doi.org/10.1111/j.1600-0854.2010.01041.x.

[29] I. Del Conde, C.N. Shrimpton, P. Thiagarajan, J.A. L´

opez, Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate

coagulation, Blood 106 (2005) 1604–1611. https://doi.org/10.1182/blood-2004-03-1095.

[30] J.L. Hood, The association of exosomes with lymph nodes, Semin. Cell Dev. Biol. 67 (2017) 29–38. https://doi.org/10.1016/j.semcdb.2016.12.002.

[31] M.S. Baig, A. Roy, S. Rajpoot, D. Liu, R. Savai, S. Banerjee, et al., Tumor-derived exosomes in the regulation of macrophage polarization, Inflamm. Res. 69

(2020) 435–451. https://doi.org/10.1007/s00011-020-01318-0.

[32] D. Zhu, J. Tian, X. Wu, M. Li, X. Tang, K. Rui, et al., G-MDSC-derived exosomes attenuate collagen-induced arthritis by impairing Th1 and Th17 cell responses,

Biochim. Biophys. Acta, Mol. Basis Dis. 1865 (2019), 165540. https://doi.org/10.1016/j.bbadis.2019.165540.

[33] T. Schioppo, T. Ubiali, F. Ingegnoli, V. Bollati, R. Roberto Caporali, The role of extracellular vesicles in rheumatoid arthritis: a systematic review, Schioppo Clin

Rheumatol 40 (2021) 3481–3497. https://doi.org/10.1007/s10067-021-05614-w.

[34] J. Zhang, S. Li, L. Li, M. Li, C. Guo, J. Yao, S. Mi, Exosome and exosomal microRNA: trafficking, sorting, and function, Dev. Reprod. Biol. 13 (2015) 17–24.

https://doi.org/10.1016/j.gpb.2015.02.001.

[35] J. Villar-Vesga, C. Grajales, C. Burbano, A. Vanegas-García, C.H. Mu˜

noz-Vahos, G. V´

asquez, et al., Platelet-derived microparticles generated in vitro resemble

circulating vesicles of patients with rheumatoid arthritis and activate monocytes, Cell. Immunol. 336 (2019) 1–11. https://doi.org/10.1016/j.cellimm.2018.12.

002.

[36] H. Tsuno, M. Arito, N. Suematsu, T. Sato, A. Hashimoto, T. Matsui, et al., A proteomic analysis of serum-derived exosomes in rheumatoid arthritis, BMC

Rheumatol 2 (2018) 35. https://doi.org/10.1186/s41927-018-0041-8.

[37] H.G. Zhang, C. Liu, K. Su, S. Yu, L. Zhang, S. Zhang, et al., A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death,

J. Immunol. 176 (2006) 7385–7393. https://doi.org/10.4049/jimmunol.176.12.7385.

[38] M. Klingeborn, W.M. Dismuke, N.P. Skiba, U. Kelly, W.D. Stamer, C. Bowes Rickman, Directional exosome proteomes reflect polarity-specific functions in retinal

pigmented epithelium monolayers, Sci. Rep. 7 (2017) 4901. https://doi.org/10.1038/s41598-017-05102-9.

[39] H. Zhang, D. Freitas, H.S. Kim, K. Fabijanic, Z. Li, H. Chen, et al., Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow

field-flow fractionation, Nat. Cell Biol. 20 (2018) 332–343. https://doi.org/10.1038/s41556-018-0040-4.

[40] T. Zimmermann, E. Kunisch, R. Pfeiffer, A. Hirth, H.D. Stahl, U. Sack, et al., Isolation and characterization of rheumatoid arthritis synovial fibroblasts from

primary culture–primary culture cells markedly differ from fourth-passage cells, Arthritis Res. 3 (2001) 72–76. https://doi.org/10.1186/ar142.

[41] M. Presta, M. Camozzi, G. Salvatori, M. Rusnati, Role of the soluble pattern recognition receptor PTX3 in vascular biology, J. Cell Mol. Med. 11 (2007) 723–738.

https://doi.org/10.1111/j.1582-4934.2007.00061.x.

[42] B. Choi, E.J. Lee, Y.S. Park, S.M. Kim, E.Y. Kim, Y. Song, et al., Pentraxin-3 silencing suppresses gastric cancer-related inflammation by inhibiting chemotactic

migration of macrophages, Anticancer Res. 35 (2015) 2663–2668.

[43] Y. Kim, J.Y. Park, H.J. Park, M.K. Kim, Y.I. Kim, H.J. Kim, et al., Pentraxin-3 modulates osteogenic/odontogenic differentiation and migration of human dental

pulp stem cells, Int. J. Mol. Sci. 17 (2019) 5778. https://doi.org/10.3390/ijms20225778.

[44] J. Zhang, L. Koussih, L. Shan, A.J. Halayko, B.K. Chen, A.S. Gounni, TNF up-regulates PENTRAXIN3 expression in human airway smooth muscle cells via JNK

and ERK1/2 MAPK pathways, Allergy Asthma Clin. Immunol. 11 (2015) 37, eCollection, https://doi.org/10.1186/s13223-015-0104-y.

[45] C. Xie, L.Z. Zhang, Z.L. Chen, W.J. Zhong, J.H. Fang, Y. Zhu, et al., A hMTR4-PDIA3P1-miR-125/124-TRAF6 regulatory Axis and its function in NF kappa B

signaling and chemoresistance, Hepatology 71 (2020) 1660–1677, https://doi.org/10.1002/hep.30931.

[46] H. Shim, J. Nam, S.W. Kim, NF-κB p65 represses microRNA-124 transcription in diffuse large B-cell lymphoma, Genes Genomics 42 (2020) 543–551. https://

doi.org/10.1007/s13258-020-00922-y.

[47] G. Lai, R. Sun, J. Wu, B. Zhang, Y. Zhao, 20-HETE regulated PSMB5 expression via TGF-β/Smad signaling pathway, Prostag. Other Lipid Mediat. 134 (2018)

123–130. https://doi.org/10.1016/j.prostaglandins.2017.08.005.

[48] J.A.M. Bard, E.A. Goodall, E.R. Greene, E. Jonsson, K.C. Dong, A. Martin, Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87 (2018)

697–724. https://doi.org/10.1146/annurev-biochem-062917-011931.

[49] C.Y. Wang, C.Y. Li, H.P. Hsu, C.Y. Cho, M.C. Yen, T.Y. Weng, et al., PSMB5 plays a dual role in cancer development and immunosuppression, Am J Cancer Res 7

(2017) 2103–2120.

[50] J. Fan, W. Du, H. Zhang, Y. Wang, K. Li, Y. Meng, J. Wang, Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by

targeting PSMB5, FEBS Lett. 594 (2020) 466–476. https://doi.org/10.1002/1873-3468.13624.

[51] Z. Li, X. Wang, W. Li, L. Wu, L. Chang, H. Chen, miRNA-124 modulates lung carcinoma cell migration and invasion, Int J Clin Pharmacol Ther 54 (2016)

603–612. https://doi.org/10.5414/CP202551.

[52] M. Cort´

es, L. Sanchez-Moral, O. de Barrios, M.J. Fern´

andez-Ace˜

nero, M.C. Martínez-Campanario, A. Esteve-Codina, et al., Tumor-associated macrophages

(TAMs) depend on ZEB1 for their cancer-promoting roles, EMBO J. 36 (2017) 3336–3355. https://doi.org/10.15252/embj.201797345.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る