リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs.

SHIMIZU Shino 50505592 0000-0002-0704-9048 TOJIMA Ichiro 80567347 0000-0001-7687-9427 NAKAMURA Keigo 50848380 0000-0003-2570-9529 ARAI Hiroyuki 60816627 0000-0002-9120-3035 KOUZAKI Hideaki 10402710 0000-0001-5460-4967 SHIMIZU Takeshi 00206202 0000-0002-1344-7210 滋賀医科大学

2021.11.01

概要

Objective:
Significant eosinophil infiltration and tissue remodeling are common characteristics of conditions associated with chronic airway inflammation, such as chronic rhinosinusitis with nasal polyp and bronchial asthma. This study was designed to elucidate the role of eosinophil-fibroblast interactions in tissue remodeling during chronic airway inflammation.
Methods:
Peripheral blood eosinophils or EoL-1 eosinophilic leukemia cells were cocultured with nasal polyp fibroblasts (NPFs). Coculture-induced release of exosomes, major components of extracellular vesicles (EVs), and a profibrotic cytokine, vascular endothelial growth factor (VEGF), were evaluated by enzyme-linked immunosorbent assay.
Results:
Eosinophil-NPF interactions stimulated the release of exosomes and VEGF into culture supernatants. Coculture-induced release of exosomes was stimulated earlier than VEGF release, at 3 h of incubation. The average size of the EVs released by NPFs was 133 ± 3.6 nm. NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF release from EoL-1 cells. Pretreatment of NPFs with exosome inhibitor, GW4869 or DMA attenuated the release of exosomes and VEGF from cocultured EoL-1 cells and NPFs.
Conclusion:
The results of this study indicate that eosinophil-fibroblast interactions are important in the pathophysiology of tissue remodeling in eosinophil-predominant airway inflammation and that NPF-derived exosomes play a crucial role in the release of VEGF.

この論文で使われている画像

参考文献

295

1.

296

rhinosinusitis and nasal polyps. Curr Allergy Asthma Rep. 2007;7(3):202-8.

297

2.

298

immunohistochemical localization of IL-4 in human inflamed airway tissues. IL-4 is

299

localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol.

300

1995;155(6):3234-44.

301

3.

302

2011;128(3):451-62; quiz 63-4.

303

4.

304

endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated

305

sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095-103.

306

5.

307

vascular permeability/vascular endothelial growth factor in nasal polyps. Am J Rhinol.

308

2005;19(1):7-13.

309

6.

310

growth factor produced in nasal glands of perennial allergic rhinitis. Am J Rhinol.

311

2008;22(4):365-70.

312

7.

313

expression of VEGF and VEGF receptors in nasal polyps as compared to normal turbinate

314

mucosa. Eur Arch Otorhinolaryngol. 2002;259(6):294-8.

315

8.

316

disease. Immunol Rev. 2011;242(1):161-77.

317

9.

318

Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front

Pawankar R, Nonaka M. Inflammatory mechanisms and remodeling in chronic

Nonaka M, Nonaka R, Woolley K, Adelroth E, Miura K, Okhawara Y, et al. Distinct

Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol.

Lee C, Link H, Baluk P, Homer R, Chapoval S, Bhandari V, et al. Vascular

Gosepath J, Brieger J, Lehr H, Mann W. Expression, localization, and significance of

Matsune S, Ohori J, Sun D, Yoshifuku K, Fukuiwa T, Kurono Y. Vascular endothelial

Wittekindt C, Hess A, Bloch W, Sultanie S, Michel O. Immunohistochemical

Kita H. Eosinophils: multifaceted biological properties and roles in health and

Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway

16

319

Cell Dev Biol. 2020;8:204.

320

10.

321

chronic upper airways diseases. Clinical and Experimental Allergy. 2020;50(2):135-46.

322

11.

323

epithelial cell interaction augments cysteinyl leukotrienes synthesis. J Physiol Pharmacol.

324

2002;53(1):127-32.

325

12.

326

culture of bronchial epithelial cells and eosinophils is regulated by p38 MAPK and NF-

327

kappaB. Allergy. 2005;60(11):1378-85.

328

13.

329

epithelial cell interactions stimulate the production of MUC5AC mucin and profibrotic

330

cytokines involved in airway tissue remodeling. Am J Rhinol Allergy. 2014;28(2):103-9.

331

14.

332

upper airway conditions. American Journal of Pathology. 2016;186(2):225-33.

333

15.

334

and activated coagulation factor X stimulate the release of cytokines and fibronectin from

335

nasal polyp fibroblasts via protease-activated receptors. Am J Rhinol Allergy. 2017;31(1):13-

336

8.

337

16.

338

Biological properties of extracellular vesicles and their physiological functions. J Extracell

339

Vesicles. 2015;4:27066.

340

17.

341

containing exosomes in human nasal secretions. Am J Rhinol Allergy. 2011;25(2):89-93.

342

18.

343

scoring system and algorithm for classifying chronic rhinosinusitis: The JESREC Study.

Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in

Jawień J, Chłopicki S, Olszanecki R, Lorkowska B, Gryglewski RJ. Eosinophil-

Wang CB, Wong CK, Ip WK, Li ML, Tian YP, Lam CW. Induction of IL-6 in co-

Shimizu S, Kouzaki H, Ogawa T, Takezawa K, Tojima I, Shimizu T. Eosinophil-

Ball SL, Mann DA, Wilson JA, Fisher AJ. The role of the fibroblast in inflammatory

Shimizu S, Tojima I, Takezawa K, Matsumoto K, Kouzaki H, Shimizu T. Thrombin

Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al.

Lässer C, O'Neil SE, Ekerljung L, Ekström K, Sjöstrand M, Lötvall J. RNA-

Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel

17

344

Allergy: European Journal of Allergy and Clinical Immunology. 2015;70(8):995-1003.

345

19.

346

mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological

347

Chemistry. 2010;285(23):17442-52.

348

20.

349

calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278(22):20083-90.

350

21.

351

Platelet-activating factor activates two distinct effector pathways in human eosinophils. J

352

Immunol. 2002;169(9):5252-9.

353

22.

354

vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am

355

J Respir Crit Care Med. 2006;173(11):1201-7.

356

23.

357

rhinosinusitis: risk factors for the recurrence of chronic rhinosinusitis based on 5-year follow-

358

up after endoscopic sinus surgery. International archives of allergy and immunology.

359

2008;146 Suppl 1:77-81.

360

24.

361

Occurrence and Progression of Eosinophilic Chronic Sinusitis with Nasal Polyps. Sci Rep.

362

2017;7(1):9479.

363

25.

364

multiplexed proteomic analysis reveals significant tissue and exosomal coagulation pathway

365

derangement in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol.

366

2018;8(12):1438-44.

367

26.

368

exosomal proteomic biosignatures, including cystatin SN, peroxiredoxin-5, and glycoprotein

Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory

Savina A, Furlán M, Vidal M, Colombo MI. Exosome release is regulated by a

Kato M, Kimura H, Motegi Y, Tachibana A, Minakami H, Morikawa A, et al.

Feltis B, Wignarajah D, Zheng L, Ward C, Reid D, Harding R, et al. Increased

Matsuwaki Y, Ookushi T, Asaka D, Mori E, Nakajima T, Yoshida T, et al. Chronic

Xu M, Chen D, Zhou H, Zhang W, Xu J, Chen L. The Role of Periostin in the

Mueller SK, Nocera AL, Dillon ST, Wu D, Libermann TA, Bleier BS. Highly

Mueller SK, Nocera AL, Dillon ST, Gu X, Wendler O, Otu HH, et al. Noninvasive

18

369

VI, accurately predict chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol.

370

2019;9(2):177-86.

371

27.

372

swarms eliminate airway pathogens and provide passive epithelial immunoprotection through

373

nitric oxide. J Allergy Clin Immunol. 2019;143(4):1525-35.e1.

374

28.

375

in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic

376

airway inflammation. J Transl Med. 2016;14(1):181.

377

29.

378

metalloprotease 10-containing exosomes derived from nasal polyps promote angiogenesis

379

and vascular permeability. Mol Med Rep. 2018;17(4):5921-7.

380

30.

381

epithelium-derived exosomes from nasal polyps revealed signaling functions affecting

382

cellular proliferation. Respir Med. 2020;162:105871.

383

31.

384

cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol.

385

2013;131(4):1194-203, 203.e1-14.

386

32.

387

of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced

388

airway inflammation. Clinical and Experimental Allergy. 2017;47(12):1586-98.

389

33.

390

endotoxin increase hypoxia-induced VEGF production by cultured human nasal fibroblasts in

391

synergistic fashion. Auris Nasus Larynx. 2005;32(3):243-9.

392

34.

393

matrix metalloproteinase-9, and vascular endothelial growth factor expression in nasal polyp

Nocera AL, Mueller SK, Stephan JR, Hing L, Seifert P, Han X, et al. Exosome

Lässer C, O'Neil SE, Shelke GV, Sihlbom C, Hansson SF, Gho YS, et al. Exosomes

Zhang W, Zhang J, Cheng L, Ni H, You B, Shan Y, et al. A disintegrin and

Zhou M, Tan KS, Guan WJ, Jiang LJ, Deng J, Gao WX, et al. Proteomics profiling of

Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial

Gon Y, Maruoka S, Inoue T, Kuroda K, Yamagishi K, Kozu Y, et al. Selective release

Sun D, Matsune S, Ohori J, Fukuiwa T, Ushikai M, Kurono Y. TNF-alpha and

Wang JH, Kwon HJ, Jang YJ. Rhinovirus upregulates matrix metalloproteinase-2,

19

394

fibroblasts. Laryngoscope. 2009;119(9):1834-8.

395

35.

396

expression via Akt pathway in nasal polyps. Clin Exp Allergy. 2013;43(9):1038-47.

397

36.

398

e2 on vascular endothelial growth factor production in nasal polyp fibroblasts. Allergy

399

Asthma Immunol Res. 2013;5(4):224-31.

400

37.

401

prostaglandin D2 on VEGF release by nasal polyp fibroblasts. Allergol Int. 2016;65(4):414-9.

402

38.

403

exosomes promote epithelial cell proliferation through TGF-β2 signalling pathway in severe

404

asthma. Allergy: European Journal of Allergy and Clinical Immunology. 2018;73(1):178-86.

405

39.

406

Mol Life Sci. 2018;75(2):193-208.

407

40.

408

Guerra A, et al. Exosomes from eosinophils autoregulate and promote eosinophil functions. J

409

Leukoc Biol. 2017;101(5):1191-9.

410

41.

411

Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J Allergy Clin

412

Immunol. 2015;135(6):1603-13.

413

Cho JS, Kang JH, Han IH, Um JY, Lee HM. Activation of TLR4 induces VEGF

Han DY, Cho JS, Moon YM, Lee HR, Lee HM, Lee BD, et al. Effect of prostaglandin

Kanai K, Okano M, Fujiwara T, Kariya S, Haruna T, Omichi R, et al. Effect of

Haj-Salem I, Plante S, Gounni AS, Rouabhia M, Chakir J. Fibroblast-derived

Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell

Cañas JA, Sastre B, Mazzeo C, Fernández-Nieto M, Rodrigo-Muñoz JM, González-

Mazzeo C, Cañas JA, Zafra MP, Rojas Marco A, Fernández-Nieto M, Sanz V, et al.

20

414

FIGURE LEGENDS

415

Figure 1. Coculture-induced release of exosomes and VEGF. Coculture of peripheral

416

blood eosinophils and NPFs for 24 h stimulated the release of exosomes (A) and VEGF (B)

417

(n=4). Coculture of EoL-1 cells and NPFs for 24 h stimulated the release of exosomes (C)

418

and VEGF (D) (n=6). *P<0.05 when compared between coculture group and single cell

419

group, one-way ANOVA with Tukey's honestly significant difference test or Games-

420

Howell test.

421

422

Figure 2. Release of exosomes (A) and VEGF (B) over time in coculture of EoL-1

423

cells and NPFs for 3, 6, 12, and 24 h. Coculture-induced release of exosomes and VEGF

424

was stimulated at 3 h of incubation. Coculture-induced exosome release continued to

425

decrease for up to 24 h of incubation, although coculture-induced VEGF release continued

426

to increase for up to 24 h of incubation (n=6). *P<0.05 when compared between coculture

427

group and EoL-1 cell group, one-way ANOVA with Tukey's honestly significant difference

428

test or Games-Howell test.

429

430

Figure 3. Effect of isolated NPF-derived EVs on the release of VEGF from EoL-1

431

cells. (A) Size and concentration of NPF-derived EVs as determined by nanoparticle

432

tracking analysis. (B) Transmission electron microscopy of NPF-derived EVs. (C) Isolated

433

NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF

434

release from EoL-1 cells (n=4). *P<0.05, unpaired t-test.

435

436

Figure 4. Effects of GW4869 or DMA on coculture-induced release of exosomes and

437

VEGF. Pretreatment of NPFs for 18 h with GW4869 (10 μM), an inhibitor of exosome

438

production, significantly attenuated the release of exosomes (A) and VEGF (B) from

21

439

cocultured EoL-1 cells and NPFs at 24 h (n=6). Pretreatment of NPFs for 18 h with DMA

440

(10 μg/mL), an inhibitor of exosome secretion, significantly attenuated the release of

441

exosomes (C) at 6 and 24 h and VEGF (D) at 3, 6, and 24 h from cocultured EoL-1 cells

442

and NPFs at 3, 6, and 24 h (n=4). *P<0.05, unpaired t-test.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る