リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Impact of valvuloarterial impedance on left ventricular reverse remodeling after aortic valve neocuspidization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Impact of valvuloarterial impedance on left ventricular reverse remodeling after aortic valve neocuspidization

Yamamoto Naoki 三重大学

2022.10.24

概要

Background: Aortic valve neocuspidization (AVNeo) has emerged as a promising aortic valve procedure, and is expected to have a larger effective orifice area (EOA) than commercially available bioprostheses. It is, however, unclear which indices could facilitate left ventricular (LV) reverse remodeling after AVNeo. The aim of this study is to verify the impact of global left ventricular afterload on the LV reverse remodeling following AVNeo.

Methods: Data-available consecutive 38 patients (median age, 77; interquartile range, 72.8–82.0) undergoing AVNeo for severe aortic stenosis were enrolled in this study. Preoperative and the last follow-up echocardiographic data were retrospectively analyzed including the valvuloarterial impedance (Zva), a marker of global LV afterload. Reduction in LV geometry index (LVGI) and relative wall thickness (RWT) were used as an indicator for LV reverse remodeling.

Results: The Zva reduced in 24 patients (63.2%) during the follow-up period (median, 12 months). Reduction in Zva significantly correlated to improvement of LV geometry (LVGI (r = 0.400, p = 0.013) and RWT (r = 0.627, p < 0.001)), whereas increase in EOA index did not significantly correlate to LVGI (r = 0.009, p = 0.957), or RWT (r = 0.105,
p = 0.529)). The reduction in Zva was the multivariate predictor of LV reverse remodeling.

Conclusions: Low global LV afterload led to significant LV reverse remodeling even after AVNeo, which could achieve better valve performance than the conventional bioprostheses.

Keywords: Aortic valve neocuspidization, Aortic valve stenosis, Left ventricular geometry, Left ventricular reverse remodeling, Valvuloarterial impedance

参考文献

1. Kupari M, Turto H, Lommi J. Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? Eur Heart J. 2005;26:1790–6.

2. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;52:2148–55.

3. Pierdomenico SD, Lapenna D, Bucci A, Manente BM, Cuccurullo F, Mezzetti A. Prognostic value of left ventricular concentric remodeling in uncompli- cated mild hypertension. Am J Hypertens. 2004;17:1035–9.

4. Milani RV, Lavie CJ, Mehra MR, Ventura HO, Kurtz JD, Messerli FH. Left ventric- ular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol. 2006;97:959–63.

5. Hong S, Yi G, Youn YN, Lee S, Yoo KJ, Chang BC. Effect of the prosthesis- patient mismatch on long-term clinical outcomes after isolated aortic valve replacement for aortic stenosis: a prospective observational study. J Thorac Cardiovasc Surg. 2013;146:1098–104.

6. Kitamura T, Torii S, Hanayama N, Oka N, Tomoyasu T, Irisawa Y, et al. Moderate prosthesis-patient mismatch may be negligible in elderly patients undergo- ing conventional aortic valve replacement for aortic stenosis. Int Heart J. 2013;54:11–4.

7. Briand M, Dumesnil JG, Kadem L, Tongue AG, Rieu R, Garcia D, et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol. 2005;46:291–8.

8. Ito H, Mizumoto T, Shomura Y, Sawada Y, Kajiyama K, Shimpo H. The impact of global left ventricular afterload on left ventricular reverse remodeling after aortic valve replacement. J Card Surg. 2017;32:530–6.

9. Ozaki S, Kawase I, Yamashita H, Uchida S, Nozawa Y, Matsuyama T, et al. Aortic valve reconstruction using self-developed aortic valve plasty system in aortic valve disease. Interact Cardiovasc Thorac Surg. 2011;12:550–3.

10. Iida Y, Fujii S, Akiyama S, Sawa S. Early and mid-term results of isolated aortic valve neocuspidization in patients with aortic stenosis. Gen Thorac Cardio- vasc Surg. 2018;66:648–52.

11. Beach JM, Mihaljevic T, Rajeswaran J, Marwick T, Edwards ST, Nowicki ER, et al. Ventricular hypertrophy and left atrial dilatation persist and are associ- ated with reduced survival after valve replacement for aortic stenosis. J Thorac Cardiovasc Surg. 2014;147:362-9.e8.

12. Rubens FD, Gee YY, Ngu JMC, Chen L, Burwash IG. Effect of aortic peri- cardial valve choice on outcomes and left ventricular mass regression in patients with left ventricular hypertrophy. J Thorac Cardiovasc Surg. 2016;152:1291–8.

13. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Rec- ommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

14. Park SH, Shub C, Nobrega TP, Bailey KR, Seward JB. Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: correlation with autopsy and M-mode echocardiography. J Am Soc Echocardiogr. 1996;9:119–28.

15. Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejec- tion fraction. Eur J Heart Fail. 2014;16:535–42.

16. Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol. 2011;58:1733–40.

17. Jang JY, Seo JS, Sun BJ, Kim DH, Song JM, Kang DH, et al. Impact of valvu- loarterial impedance on concentric remodeling in aortic stenosis and its regression after valve replacement. J Cardiovasc Ultrasound. 2016;24:201–7.

18. Foppa M, Duncan BB, Rohde LE. Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultra- sound. 2005. https://doi.org/10.1186/1476-7120-3-17.

19. Garcia D, Pibarot P, Dumesnil JG, Sakr F, Durand LG. Assessment of aortic valve stenosis severity: a new index based on the energy loss concept. Circulation. 2000;101:765–71.

20. Burwash IG, Hay KM, Chan KL. Hemodynamic stability of valve area, valve resistance, and stroke work loss in aortic stenosis: a comparative analysis. J Am Soc Echocardiogr. 2002;15:814–22.

21. Ozaki S, Kawase I, Yamashita H, Uchida S, Takatoh M, Kiyohara N. Midterm outcomes after aortic valve neocuspidization with glutaraldehyde-treated autologous pericardium. J Thorac Cardiovasc Surg. 2018;155:2379–87.

22. Theologou T, Harky A, Shaw M, Harrington D, Kuduvalli M, Oo A, et al. Mitro- flow and Perimount Magna 10 years outcomes a direct propensity match analysis to assess reintervention rates and long follow-up mortality. J Card Surg. 2019;34:1279–87.

23. Yamamoto Y, Iino K, Shintani Y, Kato H, Kimura K, Watanabe G, et al. Com- parison of aortic annulus dimension after aortic valve neocuspidization with valve replacement and normal valve. Semin Thorac Cardiovasc Surg. 2017;29:143–9.

24. Ugur M, Suri RM, Daly RC, Dearani JA, Park SJ, Joyce LD, et al. Comparison of early hemodynamic performance of 3 aortic valve bioprostheses. J Thorac Cardiovasc Surg. 2014;148:1940–6.

25. Goldman S, Cheung A, Bavaria JE, Petracek MR, Groh MA, Schaff HV. Mid- term, multicenter clinical and hemodynamic results for the Trifecta aortic pericardial valve. J Thorac Cardiovasc Surg. 2017;153:561–9.

26. Hachicha Z, Dumesnil JG, Pibarot P. Usefulness of the valvuloarterial imped- ance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol. 2009;54:1003–11.

27. Huded CP, Kusunose K, Shahid F, Goodman AL, Alashi A, Grimm RA, et al. Novel echocardiographic parameters in patients with aortic stenosis and preserved left ventricular systolic function undergoing surgical aortic valve replacement. Am J Cardiol. 2018;122:284–93.

28. Katsanos S, Yiu KH, Clavel MA, Rodés-Cabau J, Leong D, van der Kley F, et al. Impact of valvuloarterial impedance on 2-year outcome of patients undergoing transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2013;26:691–8.

29. Helder MR, Ugur M, Bavaria JE, Kshettry VR, Groh MA, Petracek MR, et al. The effect of postoperative medical treatment on left ventricular mass regression after aortic valve replacement. J Thorac Cardiovasc Surg. 2015;149:781–6.

30. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta- analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–6.

31. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143:e35–71.

参考文献をもっと見る