リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bone regeneration using an OCP/collagen composite supplemented with a bFGF drug delivery system: Evaluation in a rat calvarial bone defect model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bone regeneration using an OCP/collagen composite supplemented with a bFGF drug delivery system: Evaluation in a rat calvarial bone defect model

南雲 吉祥 近畿大学

2023.01.12

概要

Bone regeneration methods using biomaterials, such as a bioactive ceramic (hydroxyapatite) and bioabsorbable ceramic (β-tricalcium phosphate), have been clinically applied as reconstruction materials for various bone defects. However, bone formation by these ceramics is limited in tissue engineering approaches. An octacalcium phosphate (OCP)/collagen (Col)-conjugated composite is biodegradable and highly osteoconductive, with OCP particles within Col enhancing the migration of osteoblasts, and, thus, it has potential as a new bone regeneration material. However, the application of exogenous osteogenic cytokines with this material has not yet been examined. In the present study, basic fibroblast growth factor (bFGF) delivered by biodegradable gelatin hydrogels for sustained release was incorporated into the OCP/Col composite, and the bone regeneration ability of this system was investigated in a rat calvarial defect model. Histological, immunohistochemical, and CT examinations revealed that new bone formation was markedly greater by the OCP/Col composite with the bFGF drug delivery system than by the OCP/Col composite alone. The present results demonstrate the potential of OCP/Col with the bFGF drug delivery system for the treatment of difficult bone defects.

参考文献

1 . Jacono AA, Moskowitz B ( 2000 ) Alloplastic implants for orbital wall reconstruction. Facial Plast Surg 16: 63-68

2 . Gilhotra JS, Mcnab AA. Mckelvie P, O’ Donnell BA ( 2002 ) Late Orbital haemorrhage around alloplastic orbital floor implants. Clin Experiment Ophthalmol 30: 352-355

3. Wada Y, et al. (2009) Development of bone and cartilage in tissue-engineered human middle phalanx models. Tissue Eng Part A 15(12): 3765-3778

4. Iuchi T, Kusuhara H, Ueda Y, Morotomi T, Isogai N (2020) Influence of Periosteum Location on the Bone and Cartilage in Tissue-Engineered Phalanx. J Hand Surg Am 45(1): 62-62

5 . Gospodarowicz D (1974) Localization of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249: 123-127

6 . K D Hankenson, K Gagne, M Shaughnessy (2015) Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 94:3-12

7 . Natsume H, Tokuda H, Adachi S, Takai S, Matsushima-Nishiwaki, R Kato K, Minamitani C, Niida S, Mizutani J, Kozawa O, Otsuka T (2010) Rho-kinase limits FGF-2-stimulated VEGF release in osteoblasts. Bone. 46(4):1068-74.

8 . Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest.126(2):509-26.

9. Noël D, Djouad F, Jorgense C (2002) Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs 3: 1000-1004

10. Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y (1999) Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10:79-94

11. Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M(1991)Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164(1): 37-50

12. Kamakura S, Sasaki K, Honda Y, Anada T, Suzuki O (2006) Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. J Biomed Mater Res B Appl Biomater 79(2): 210-217

13. Itani Y, Asamura S, Matsui M, Tabata Y, Isogai N. (2014) Evaluation of nanofiber- based polyglycolic acid scaffolds for improved chondrocyte retention and in vivo bioengineered cartilage regeneration. Plast Reconstr Surg 133: 805e-813e

14. Ono I, et al. (1992) Study on bone induction hydroxyapatite combined with bone morphogenetic protein. Plast Reconstr Surg 90:870-879

15. Hammerele CH, Schmid J, Lang NP, Olah AJ (1995) Temporal dynamics of healing in rabbit cranial defect using guided bone regeneration. J Oral Maxillofac Surg 53:167- 174

16. Kamakura S., Sasaki K., Honda Y., Anada T., Suzuki O. (2006) Octacalcium phosphate combined with collagen orthotopically enhances bone regeneration. J. Biomed Mater Res B Appl Biomater 79: 210-217

17. Kamakura S, et al (2002) Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite. J Biomed Mater Res 59: 29-34

18. Tabata Y, Nagano A, Muniruzzaman M, Ikada Y. (1998) In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19(19): 1781-1789.

19. Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J of controlled Release. 31: 189-199

20. Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y (1999) Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10: 79-94

21. Li CF & Hughes-Fulford M (2006) Fibroblast growth factor-2 is an immediate- early gene induced by mechanical stress in osteogenic cells. Journal of bone and

参考文献をもっと見る