リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hydrogenation of acetylene and propyne over hydrogen storage ErNi5-xAlx alloys and the role of absorbed hydrogen」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hydrogenation of acetylene and propyne over hydrogen storage ErNi5-xAlx alloys and the role of absorbed hydrogen

Ryota Tsukuda Takayuki Kojima Daisuke Okuyama Satoshi Kameoka Chikashi Nishimura An Pang Tsai 東北大学 DOI:10.1016/j.ijhydene.2020.05.062

2020.07.31

概要

The hydrogen storage properties of ErNi5-xAlx (x=0, 0.5, 0.75, 1, 1.25, and 1.5) alloys were investigated by pressure-composition isotherms and in situ X-ray diffraction measurements under a hydrogen atmosphere. Catalytic reactivities toward the hydrogenation of alkynes (acetylene and propyne) over ErNi5-xAlx (x=0, 1, and 1.5) alloys were also studied and the contribution of absorbed hydrogen to hydrogenation is discussed. All ErNi5-xAlx alloys possess a hexagonal structure (CaCu5-type) with the space group P6/mmm. The substitution of Al for Ni facilitated hydrogen absorption at lower hydrogen pressures by the formation of larger interstitial spaces. ErNi3.5Al1.5Hn with absorbed hydrogen showed higher reactivities for the catalytic hydrogenation of acetylene and propyne than ErNi5 and ErNi4Al without absorbed hydrogen. The reason for this was concluded to be that absorbed hydrogen activates adsorbates (C2H2 and hydrogen) that are supplied from the gas phase.

この論文で使われている画像

参考文献

[1] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy 2007;32:1121-40 and references therein.

[2] Jain IP, Lal C, Jain A. Hydrogen storage in Mg: A most promising material. Int J Hydrogen Energy 2010;35:5133-44

[3] Bououdina M, Grant D, Walker G. Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int J Hydrogen Energy 2006;31:177-82

[4] Van Vucht JHN, Kuijpers FA, Bruning HCAM. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 1970;25:133-40.

[5] Mendelsohn MH, Gruen DM, Dwight AE. LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature 1977;269:45-7.

[6] Diaz H, Percheron-Guégan A, Achard JC, Chatillon C, Mathieu JC. Thermodynamic and structural properties of LaNi5-yAly compounds and their related hydrides. Int J Hydrogen Energy. 1979;4:445-54.

[7] Yamagishi R, Kojima T, Kameoka S, Okuyama D, Sato TJ, Nishimura C, Tsai AP. Creating the hydrogen absorption capability of CeNi5 through the addition of Al. Int J Hydrogen Energy 2017;42:21832-40.

[8] Šorgić B, Blažina Ž, Drašner A. A study of structural and thermodynamic properties of the YNi5-xAlx-hydrogen system. J Alloys Comp 1998;265:185-9.

[9] Bobet J-L, Pechev S, Chevalier B, Darriet B. Structural and hydrogen sorption studies of NdNi5-xAlx and GdNi5-xAlx. J Alloys Comp 1998;267:136-41.

[10] Biliškov N, Miletić GI, Drašner A, Prezelj K. Structural and hydrogen sorption properties of SmNi5-xAlx system - An experimental and theoretical study. Int J Hydrogen Energy 2015;40:8548-61.

[11] Blažina Ž, Šorgić B, Drašner A. The crystal structure and some thermodynamic properties of the TbNi5-xAlx-hydrogen system. J Phys Condens Matter 1997;9:3099-105.

[12] Šorgić B, Drašner A, Blažina Ž. On the structural and thermodynamic properties of the DyNi5-xAlx-hydrogen system. J Phys Condens Matter 1995;7:7209-15.

[13] Blažina Ž, Šorgić B, Drašner A. On some structural and hydrogen sorption properties of the HoNi5-xAlx intermetallics. J Mater Sci Lett 1997;16:1683-5.

[14] Šorgić B, Drašner A, Blažina Ž. The effect of aluminium on the structural and hydrogen sorption properties of ErNi5. J Alloys Comp 1996;232:79-83.

[15] Takeshita T, Malik SK, Wallace WE. Hydrogen absorption in RNi4Al (R=Rare Earth) ternary compounds. J Solid State Chem 1978;23:271-4.

[16] Doyle AM, Shaikhutdinov SK, Jackson SD, Freund HJ. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals?. Angew Chem Int Ed 2003;42:5240-3.

[17] Morkel M, Rupprechter G, Freund HJ. Finite size effects on supported Pd nanoparticles: Interaction of hydrogen with CO and C2H4. Surf Sci 2005;588:L209-L19.

[18] Doyle AM, Shaikhutdinov SK, Freund HJ. Alkene chemistry on the palladium surface: nanoparticles vs. single crystals. J Catal 2004;223:444-53.

[19] Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer JH, Schauermann S, Freund HJ. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angew Chem Int Ed 2008;47:9289-93.

[20] Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008;320:86-9.

[21] Ludwig W, Savara A, Schauermann S, Freund HJ. Role of low-coordinated surface sites in olefin hydrogenation: A molecular beam study on Pd nanoparticles and Pd(111). ChemPhysChem 2010;11:2319-22.

[22] Aleksandrov HA, Kozlov SM, Schauermann S, Vayssilov GN, Neyman KM. How absorbed hydrogen affects the catalytic activity of transition metals. Angew Chem Int Ed 2014;53:13371-13375.

[23] Ohno S, Wilde M, Mukai K, Yoshinobu J, Fukutani K. Mechanism of olefin hydrogenation catalysis driven by palladium dissolved hydrogen. J Phys Chem C 2016;120:11481-9.

[24] Soga K, Imamura H, Ikeda S. Hydrogenation of ethylene over LaNi5 Alloy. J Phys Chem 1977;81:1762-6.

[25] Soga K, Otsuka K, Sato M, Sano T, Ikeda S. Hydrogenation of ethylene over an LaNi5 plate. J Less-Common Met 1980;71:259-63.

[26] Soga K, Imamura H, Ikeda S. Hydrogenation of ethylene over some intermetallic compounds. J Catal 1979;56:119-26.

[27] Kato S, Borgschulte A, Ferri D, Bielmann M, Crivello CJ, Wiedenmann D, Parlinska-Wojtan M, Rossbach P, Lu Y, Remhof A, Züttel A. CO2 hydrogenation on a metal hydride surface. Phys Chem Chem Phys 2012;14:5518-26.

[28] Kato S, Matam SK, Kerger P, Bernard L, Battaglia C, Vogel D, Rohwerder M, Züttel A. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew Chem Int Ed 55 2016;55:6028-32.

[29] Tsukuda R, Yamagishi R, Kameoka S, Nishimura C, Tsai AP. Ability of hydrogen storage CeNi5-xGax and Mg2Ni alloys to hydrogenate acetylene. Sci Technol Adv Mater 2019;20:774-85.

[30] Rodríguez-Carvajal J. Recent developments of the Program FULLPROF. In CPD Newsletter 2001;12:26; available at http://www.ill.eu/sites/fullprof/index.html

[31] Wernick JH, Geller S. Transition element-rare earth compounds with Cu5Ca structure. Acta Crystallogr 1959;12:662-5.

[32] Buschow KHJ. Crystal structures, magnetic properties and phase relations of erbium-nickel intermetallic compounds. J Less-Common Met 1968;16:45-53.

[33] Percheron-Guégan A, Lartigue C, Achard JC, Germi P, Tasset F. Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5-xAlx, LaNi5-xMnx, intermetallics and their hydride (deuteride). J Less-Common Met 1980;74:1-12.

[34] Du H, Zhang W, Wang C, Han J, Yanga Y, Chen B, Xie C, Sun K, Zhang B. Neutron powder diffraction study on the structures of LaNi5-xAlxDy compounds. Solid State Commun 2003;128:157-61.

[35] Bos ANR, Westerterp KR. Mechanism and kinetics of the selective hydrogenation of ethyne and ethane. Chem Eng Process 32 1993;32:1-7.

[36] Sandrock GD, Goodell PD. Surface poisoning of LaNi5 and (Fe, Mn)Ti by O2, CO and H2O. J Less-Common Met 1980;73:161-8.

[37] Hirata T. Hydrogen absorption and desorption properties of FeTi1.14O0.03 in impure hydrogen containing CO, CO2 and oxygen. J Less-Common Met 1985;107:23-33.

[38] Schweppe F, Martin M, Fromm E. Hydrogen absorption of LaNi5 powders precovered with O2, CO, H2S, CO2 or N2. J Alloys Comp 1997;253/254:511-4.

[39] Han S, Zhang X, Shi S, Tanaka H, Kuriyama N, Taoka N, Aihara K, Xu Q. Experimental and theoretical investigation of the cyclic durability against CO and degradation mechanism of the LaNi5 hydrogen storage alloy. J Alloys Comp 2007;446/447:208-11.

参考文献をもっと見る