リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds

Sheng, Min 大阪大学

2021.04.07

概要

The development of metal phosphide catalysts for organic synthesis is still in its early stages. Herein, we report the successful synthesis of single-crystal cobalt phosphide nanorods (Co2P NRs) containing coordinatively unsaturated Co−Co active sites, which serve as a new class of air-stable, highly active, and reusable heterogeneous catalysts for the reductive amination of carbonyl compounds. The Co2P NR catalyst showed high activity for the transformation of a broad range of carbonyl compounds to their corresponding primary amines using an aqueous ammonia solution or ammonium acetate as a green amination reagent at 1 bar of H2 pressure; these conditions are far milder than previously reported. The air stability and high activity of the Co2P NRs is noteworthy, as conventional Co catalysts are air-sensitive (pyrophorous) and show no activity for this transformation under mild conditions. P-alloying is therefore of considerable importance for nanoengineering air-stable and highly active non-noble-metal catalysts for organic synthesis.

KEYWORDS:cobalt, phosphide, reductive amination, aldehyde, ketone

この論文で使われている画像

参考文献

(1) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112−3135.

(2) Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411−2502.

(3) Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustain- ability. Chem. Rev. 2018, 118, 505−613.

(4) Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835− 838.

(5) Furukawa, S.; Komatsu, T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735−765.

(6) Carenco, S.; Portehault, D.; Boissier̀e, C.; Mézailles, N.; Sanchez,C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 2013, 113, 7981−8065.

(7) Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 2013, 46, 1682−1691.

(8) Duan, M.; Yu, J.; Meng, J.; Zhu, B.; Wang, Y.; Gao, Y. Reconstruction of supported metal nanoparticles in reaction conditions. Angew. Chem., Int. Ed. 2018, 57, 6464−6469.

(9) Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529−1541.

(10) Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C. Strategies for developing transition metal phosphides as heteroge- neous electrocatalysts for water splitting. Nano Today 2017, 15, 26− 55.

(11) Popczun, E.; McKone, J.; Read, C.; Biacchi, A.; Wiltrout, A.; Lewis, N.; Schaak, R. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2013, 135, 9267−9270.

(12) Cao, S.; Chen, Y.; Wang, C.; He, P.; Fu, W. Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem. Commun. 2014, 50, 10427−10429.

(13) Liu, P.; Rodriguez, J. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871−14878.

(14) Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.;Ma, Y.; Du, G.; Asiri, A.; Chen, L.; Sun, X. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

(15) De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314−3347.

(16) Yang, S.; Peng, L.; Oveisi, E.; Bulut, S.; Sun, D.; Asgari, M.; Trukhina, O.; Queen, W. MOF-derived cobalt phosphide/carbon nanocubes for selective hydrogenation of nitroarenes to anilines. Chem. - Eur. J. 2018, 24, 4234−4238.

(17) Liu, K.; Wang, Y.; Chen, P.; Zhong, W.; Liu, Q.; Li, M.; Wang, Y.; Wang, W.; Lu, Z.; Wang, D. Noncrystalline nickel phosphide decorated poly(vinyl alcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. Appl. Catal., B 2016, 196, 223−231.

(18) Gao, R.; Pan, L.; Wang, H.; Zhang, X.; Wang, L.; Zou, J. Ultradispersed nickel phosphide on phosphorus-doped carbon with tailored d-band center for efficient and chemoselective hydrogenation of nitroarenes. ACS Catal. 2018, 8, 8420−8429.

(19) Carenco, S.; Leyva-Perez, A.; Concepcion, P.; Boissiere, C.; Mezailles, N.; Sanchez, C.; Corma, A. Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 2012, 7, 21−28.

(20) Feng, H.; Li, X.; Qian, H.; Zhang, Y.; Zhang, D.; Zhao, D.; Hong, S.; Zhang, N. Efficient and sustainable hydrogenation of levulinic-acid to gamma-valerolactone in aqueous solution over acid- resistant CePO4/Co2P catalysts. Green Chem. 2019, 21, 1743−1756.

(21) Fujita, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Jitsukawa, K.; Mitsudome, T. Unique catalysis of nickel phosphide nanoparticles to promote the selective transformation of biofuranic aldehydes into diketones in water. ACS Catal. 2020, 10, 4261−4267.

(22) Mitsudome, T.; Sheng, M.; Nakata, A.; Yamasaki, J.; Mizugaki, T.; Jitsukawa, K. A cobalt phosphide catalyst for the hydrogenation of nitriles. Chem, Sci. 2020, 11, 6682−6689.

(23) Ishikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catal. 2021, 11 (2),750−757.

(24) Weissermel, K.; Arpe, H. Industrial Organic Chemistry, 3rd ed.; Wiley-VCH, 2008.

(25) Vardanyan, R. S.; Hruby, V. J. Synthesis of Best-Seller Drugs;Academic Press, 2016.

(26) Lawrence, S. A. Amines. Synthesis, Properties and Applications;Cambridge Univ. Press, 2004

(27) Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Synthesis of primary amines: First homogeneously catalyzed reductive amination with ammonia. Org. Lett. 2002, 4, 2055−2058.

(28) Klinkenberg, J. L.; Hartwig, J. F. Catalytic organometallic reactions of ammonia. Angew. Chem., Int. Ed. 2011, 50, 86−95.

(29) Nakamura, Y.; Kon, K.; Touchy, A. S.; Shimizu, K.; Ueda, W. Selective synthesis of primary amines by reductive amination of ketones with ammonia over supported Pt catalysts. ChemCatChem 2015, 7, 921−924.

(30) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: An environmentally friendly approach. Green Chem. 2016, 18, 487−496.

(31) Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, K.; Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 2017, 139, 11493−11499.

(32) Liang, G.; Wang, A.; Li, L.; Xu, G.; Yan, N.; Zhang, T. Production of primary amines by reductive amination of biomass- derived aldehydes/ketones. Angew. Chem., Int. Ed. 2017, 56, 3050−3054.

(33) Guo, W.; Tong, T.; Liu, X.; Guo, Y.; Wang, Y. Morphology- tuned activity of Ru/Nb2O5 catalysts for ketone reductive amination. ChemCatChem 2019, 11, 4130−4138.

(34) Jagadeesh, R. V.; Murugesan, K.; Alshammari, A.; Neumann, H.; Pohl, M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326−332.

(35) Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe, R. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2019, 2, 71−77.

(36) Zhang, Y.; Yang, H.; Chi, Q.; Zhang, Z. Nitrogen-doped carbon-supported nickel nanoparticles: a robust catalyst to bridge the hydrogenation of nitriles and the reductive amination of carbonyl compounds for the synthesis of primary amines. ChemSusChem 2019, 12, 1246−1255.

(37) Murugesan, K.; Beller, M.; Jagadeesh, R. V. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew. Chem., Int. Ed. 2019, 58, 5064−5068.

(38) Bäumler, C.; Bauer, C.; Kempe, R. The synthesis of primary amines through reductive amination employing an iron catalyst. ChemSusChem 2020, 13, 3110−3114.

(39) Murugesan, K.; Senthamarai, T.; Chandrashekhar, V.; Natte, K.; Kamer, P.; Beller, M.; Jagadeesh, R. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem. Soc. Rev. 2020, 49, 6273−6328.

(40) Irrgang, T.; Kempe, R. Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 2020, 120, 9583−9674.

(41) Raney, M. Method of preparing catalytic material, U.S. Patent US1563587A, 1925.

(42) Tucker, S. H. Catalytic hydrogenation using Raney nickel. J. Chem. Educ. 1950, 27, 489−493.

(43) Nishimura, S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis; Wiley-VCH, 2001.

(44) Jagadeesh, R. V.; Surkus, A.; Junge, H.; Pohl, M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073−1076.

(45) He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582−12594.

(46) Banerjee, D.; Jagadeesh, R.; Junge, K.; Pohl, M.; Radnik, J.; Brückner, A.; Beller, M. Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angew. Chem., Int. Ed. 2014, 53, 4359−4363.

(47) Jagadeesh, R. V.; Junge, H.; Beller, M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat. Commun. 2014, 5, 4123.

(48) Chen, F.; Surkus, A.; He, L.; Pohl, M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4−Co/NGr@ α-Al2O3). J. Am. Chem. Soc. 2015, 137, 11718−11724.

(49) Zhang, H.; Ha, D.; Hovden, R.; Kourkoutis, L.; Robinson, R. Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source. Nano Lett. 2011, 11, 188−197.

(50) Skála, R.; Drábek, M. The crystal structure of Co2P from X-ray powder diffraction data and its mineralogical applications. Bull. Czech Geol. Surv. 2001, 76, 209−216.

(51) Yuan, Z.; Liu, B.; Zhou, P.; Zhang, Z.; Chi, Q. Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination. J. Catal. 2019, 370, 347−356.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る