リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detection of Relative Afferent Pupillary Defect and Its Correlation with Structural and Functional Asymmetry in Patients with Glaucoma Using Hitomiru, a Novel Hand-Held Pupillometer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detection of Relative Afferent Pupillary Defect and Its Correlation with Structural and Functional Asymmetry in Patients with Glaucoma Using Hitomiru, a Novel Hand-Held Pupillometer

Nakamura, Makoto Sakamoto, Mari Ueda, Kaori Okuda, Mina Takano, Fumio Yamada-Nakanishi, Yuko 神戸大学

2023.06

概要

Patients with asymmetric glaucomatous optic neuropathy (GON) present a relative afferent pupillary defect (RAPD) in the eye with more advanced damage. Although useful, pupillometric RAPD quantification is not widely used as it is not portable. Whether asymmetry of the peripapillary capillary perfusion density (CPD) detected using optical coherence tomography angiography correlates with the severity of RAPD remains unknown. This study assessed RAPD in 81 patients with GON using Hitomiru, a novel hand-held infrared binocular pupillometer. The correlation and ability to detect clinical RAPD based on the swinging flash light test of two independent RAPD parameters (the maximum pupil constriction ratio and the constriction maintenance capacity ratio) were assessed. The coefficient of determination (R²) was calculated between each of the two RAPD parameters and asymmetry of the circumpapillary retinal nerve fiber layer thickness (cpRNFLT), ganglion cell layer/inner plexiform layer thickness (GCL/IPLT), and CPD. The two RAPD parameters showed a correlation coefficient of 0.86 and areas under the receiver operating characteristic (ROC) curve of 0.85–0.88, with R² being 0.63–0.67 for the visual field, 0.35–0.45 for cpRNFLT, 0.45–0.49 for GCL/IPLT, and 0.53–0.59 for CPD asymmetry. Hitomiru has high discriminatory performance in detecting RAPD in patients with asymmetric GON. CPD asymmetry may better correlate with RAPD than cpRNFLT and GCL/IPLT asymmetry.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Levatin, P. Pupillary escape in disease of the retina or optic nerve. Arch. Ophthalmol. 1959, 62, 768–779. [CrossRef]

Thompson, H.S.; Corbett, J.J.; Cox, T.A. How to measure the relative afferent pupillary defect. Surv. Ophthalmol. 1981, 26, 39–42.

[CrossRef]

Feuer, W.J.; Anderson, D.R. Static threshold asymmetry in early glaucomatous visual field loss. Ophthalmology 1989, 96, 1285–1297.

[CrossRef]

Broman, A.T.; Quigley, H.A.; West, S.K.; Katz, J.; Munoz, B.; Bandeen-Roche, K.; Tielsch, J.; Friedman, D.; Crowston, J.; Taylor, H.;

et al. Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data. Invest.

Ophthalmol. Vis. Sci. 2008, 49, 66–76. [CrossRef]

Chang, D.S.; Xu, L.; Boland, M.V.; Friedman, D.S. Accuracy of pupil assessment for the detection of glaucoma: A systematic

review and meta-analysis. Ophthalmology 2013, 120, 2217–2225. [CrossRef]

Tatsumi, Y.; Nakamura, M.; Fujioka, M.; Nakanishi, Y.; Kusuhara, A.; Maeda, H.; Negi, A. Quantification of retinal nerve fiber

layer thickness reduction associated with a relative afferent pupillary defect in asymmetric glaucoma. Br. J. Ophthalmol. 2007, 91,

633–637. [CrossRef]

Besadaa, E.; Frauensa, B.J.; Makhloufa, R.; Shechtmana, D.; Rodmana, J.; Demeritta, M.; Hardigan, P. More sensitive correlation of

afferent pupillary defect with ganglion cell complex. J. Optom. 2018, 11, 75–85. [CrossRef] [PubMed]

Lowenstein, O.; Loewenfeld, I.E. Electronic pupillography: A new instrument and some clinical applications. Arch. Ophthalmol.

1958, 59, 352–363. [CrossRef]

Cox, T.A. Pupillographic characteristics of simulated relative afferent pupillary defects. Invest. Ophthalmol. Vis. Sci. 1989, 30,

1127–1131. [PubMed]

Kalaboukhova, L.; Fridhammar, V.; Lindblom, B. Relative afferent pupillary defect in glaucoma: A pupillometric study. Acta

Ophthalmol. 2007, 85, 519–525. [CrossRef]

Chang, D.S.; Boland, M.V.; Arora, K.S.; Supakontanasan, W.; Chen, B.B.; Friedman, D.S. Symmetry of the pupillary light reflex

and its relationship to retinal nerve fiber layer thickness and visual field defect. Invest. Ophthalmol. Vis. Sci. 2013, 54, 5596–5601.

[CrossRef]

Ozeki, N.; Yuki, K.; Shiba, D.; Tsubota, K. Pupillographic evaluation of relative afferent pupillary defect in glaucoma patients. Br.

J. Ophthalmol. 2013, 97, 1538–1542. [CrossRef]

Tatham, A.J.; Meira-Freitas, D.; Weinreb, R.N.; Marvasti, A.M.; Zangwill, L.M.; Medeiros, F.A. Estimation of retinal ganglion cell

loss in glaucomatous eyes with a relative afferent pupillary defect. Invest. Ophthalmol. Vis. Sci. 2014, 55, 513–522. [CrossRef]

[PubMed]

Gracitelli, C.P.B.; Tatham, A.J.; Zangwill, L.M.; Weinreb, R.N.; Abe, R.Y.; Diniz-Filho, A.; Paranhos, A.; Baig, S.; Medeiros, F.A.

Asymmetric macular structural damage is associated with relative afferent pupillary defects in patients with glaucoma. Invest.

Ophthalmol. Vis. Sci. 2016, 57, 1738–1746. [CrossRef]

Volpe, N.J.; Plotkin, E.S.; Maguire, M.G.; Hariprasad, R.; Galetta, S.L. Portable pupillography of the swinging flashlight test to

detect afferent pupillary defects. Ophthalmology 2000, 107, 1913–1921. [CrossRef]

Couret, D.; Boumaza, D.; Grisotto, C.; Triglia, T.; Pellegrini, L.; Ocquidant, P.; Bruder, N.J.; Velly, L.J. Reliability of standard

pupillometry practice in neurocritical care: An observational, double-blinded study. Crit. Care 2016, 20, 99. [CrossRef]

Chen, J.W.; Gombart, Z.J.; Rogers, S.; Gardiner, S.K.; Cecil, S.; Bullock, R.M. Pupillary reactivity as an early indicator of increased

intracranial pressure: The introduction of the Neurological Pupil index. Surg. Neurol. Int. 2011, 2, 82. [CrossRef]

Kotani, J.; Nakao, H.; Yamada, I.; Miyawaki, A.; Mambo, N.; Ono, Y. A novel method for measuring the pupil diameter and

pupillary light reflex of healthy volunteers and patients with intracranial lesions using a newly developed pupilometer. Front.

Med. 2021, 8, 598791. [CrossRef] [PubMed]

Mannil, S.S.; Agarwal, A.; Conner, I.P.; Kumar, R.S. A comprehensive update on the use of optical coherence tomography

angiography in glaucoma. Int. Ophthalmol. 2022, 43, 1785–1802. [CrossRef]

Sakamoto, M.; Mori, S.; Ueda, K.; Akashi, A.; Inoue, Y.; Kurimoto, T.; Kanamori, A.; Yamada, Y.; Nakamura, M. Diagnostic utility

of combined retinal ganglion cell count estimates in Japanese glaucoma patients. Jpn. J. Ophthalmol. 2018, 62, 31–40. [CrossRef]

[PubMed]

Anderson, D.R.; Patella, V.M. Automated Static Perimetry, 2nd ed.; The C.V. Mosby Co.: St. Louis, MO, USA, 1999; pp. 121–190.

Lankaranian, D.; Altangerel, U.; Spaeth, G.L.; Leavitt, J.A.; Steinmann, W.C. The usefulness of a new method of testing for a

relative afferent pupillary defect in patients with ocular hypertension and glaucoma. Trans. Am. Ophthalmol. Soc. 2005, 103,

200–208.

J. Clin. Med. 2023, 12, 3936

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

15 of 15

Akashi, A.; Kanamori, A.; Nakamura, M.; Fujihara, M.; Yamada, Y.; Negi, A. Comparative assessment for the ability of Cirrus,

RTVue, and 3D-OCT to diagnose glaucoma. Invest. Ophthalmol. Vis. Sci. 2013, 54, 4478–4484. [CrossRef]

Ma, J.P.; Robbins, C.B.; Stinnett, S.S.; Johnson, K.G.; Scott, B.L.; Grewal, D.S.; Fekrat, S. Repeatability of peripapillary OCT

angiography in meurodegenerative disease. Ophthalmol. Sci. 2021, 1, 100075. [CrossRef]

Wilhelm, H. Neuro-ophthalmology of pupillary function–practical guidelines. J. Neurol. 1998, 245, 573–583. [CrossRef] [PubMed]

Thompson, H.S.; Montague, P.; Cox, T.A.; Corbett, J.J. The relationship between visual acuity, pupillary defect, and visual field

loss. Am. J. Ophthalmol. 1982, 93, 681–688. [CrossRef] [PubMed]

Lagreze, W.D.; Kardon, R.H. Correlation of relative afferent pupillary defect and estimated retinal ganglion cell loss. Graefes Arch.

Clin. Exp. Ophthalmol. 1998, 236, 401–404. [CrossRef]

Liu, L.; Jia, Y.; Takusagawa, H.L.; Pechauer, A.D.; Edmunds, B.; Lombardi, L.; Davis, E.; Morrison, J.C.; Huang, D. Optical

coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015, 133, 1045–1052. [CrossRef]

[PubMed]

Wang, X.; Jiang, C.; Ko, T.; Kong, X.; Yu, X.; Min, W.; Shi, G.; Sun, X. Correlation between optic disc perfusion and glaucomatous

severity in patients with open-angle glaucoma: An optical coherence tomography angiography study. Graefes Arch. Clin. Exp.

Ophthalmol. 2015, 253, 1557–1564. [CrossRef] [PubMed]

Chen, C.L.; Bojikian, K.D.; Gupta, D.; Wen, J.C.; Zhang, Q.; Xin, C.; Kono, R.; Mudumbai, R.C.; Johnstone, M.A.; Chen, P.P.; et al.

ONH perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant.

Imaging Med. Surg. 2016, 6, 125–133. [CrossRef] [PubMed]

Van Melkebeke, L.; Barbosa-Breda, J.; Huygens, M.; Stalmans, I. Optical coherence tomography angiography in glaucoma: A

review. Ophthalmic Res. 2018, 60, 139–151. [CrossRef]

Rao, H.L.; Pradhan, Z.S.; Suh, M.H.; Moghimi, S.; Mansouri, K.; Weinreb, R.N. Optical coherence tomography angiography in

glaucoma. J. Glaucoma. 2020, 29, 312–321. [CrossRef] [PubMed]

Hou, H.; Moghimi, S.; Proudfoot, J.A.; Ghahari, E.; Penteado, R.C.; Bowd, C.; Yang, D.; Weinreb, R.N. Ganglion cell complex

thickness and macular vessel density loss in primary open-angle glaucoma. Ophthalmology 2020, 127, 1043–1052. [CrossRef]

[PubMed]

Zheng, D.; Huang, Z.; Chen, W.; Zhang, Q.; Shi, Y.; Chen, J.; Cen, L.; Li, T. Repeatability and clinical use of pupillary light reflex

measurement using RAPDx® pupillometer. Int. Ophthalmol. 2022, 42, 2227–2234. [CrossRef] [PubMed]

Kawasaki, A.; Moore, P.; Kardon, R.H. Variability of the relative afferent pupillary defect. Am. J. Ophthalmol. 1995, 120, 622–633.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る