リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation processes of tafoni on pyroclastic rock surfaces with hydrothermal alteration on the Isotake coast, Shimane, Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation processes of tafoni on pyroclastic rock surfaces with hydrothermal alteration on the Isotake coast, Shimane, Japan

小暮 哲也 Sueyoshi, Ryuya 大平 寛人 三瓶 良和 Ki-Cheol Shin Abe, Yutaka 島根大学 DOI:10.1016/j.geomorph.2021.108050

2022.02.01

概要

Cliffs along the Isotake coast, Shimane, Japan, have two types of distinctive surfaces with different colours, with tafoni and without tafoni, even though they consist of the same pyroclastic rock. Rockfalls, which result in severe accidents, occur only on the surface without tafoni. Geochemical analyses of the cliff materials and the Schmidt hammer rebound test were conducted to elucidate the process of salt weathering in the formation of tafoni. The strontium stable isotope ratio (87Sr/86Sr) of the calcite (i.e., 0.706298) found on the backwall of tafoni indicated that the calcium in this calcite is derived from cliff materials, although the cliff receives seawater through splashing. Carbon, hydrogen, nitrogen and sulfur elemental analyses and X-ray diffraction pattern measurements revealed that clinoptilolite formed by hydrothermal alteration was more abundant in the cliff surfaces with tafoni than in those without tafoni, indicating a high abundance of calcium available for incorporation into calcite. The hardness of the cliff materials increases as the clinoptilolite content increases in any surface type. Consequently, tafoni preferentially form on surfaces with abundant clinoptilolite produced by hydrothermal alteration, although the surfaces have also been strengthened by hydrothermal alteration. Our results imply that the presence of tafoni indicates an overall lower risk of rockfalls.

この論文で使われている画像

参考文献

Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. Eng.

Geol. 81, 1–14. https://doi.org/10.1016/j.enggeo.2005.06.006.

Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal fields. Annu. Rev.

Earth Planet. Sci. 6, 229–250.

Bruthans, J., Filippi, M., Slavík, M., Svobodová, E., 2018. Origin of honeycombs: testing the

hydraulic and case hardening hypotheses. Geomorphology 303, 68–83. https://doi.

org/10.1016/j.geomorph.2017.11.013.

Cárdenes, V., Mateos, F.J., Fernández-Lorenzo, S., 2014. Analysis of the correlations between freeze–thaw and salt crystallization tests. Environ. Earth Sci. 71, 1123–1134.

https://doi.org/10.1007/s12665-013-2516-7.

Chen, L.Q., Guo, F.S., Liu, F.J., Xu, H., Ding, T., Liu, X., 2019. Origin of Tafoni in the Late Cretaceous Aeolian Sandstones, Danxiashan UNESCO Global Geopark, South China. Acta

Geol. Sin.-Engl. Ed 93, 451–463. https://doi.org/10.1111/1755-6724.13810.

Committee, Analytical Methods, 2006. Evaluation of analytical instrumentation. Part XIX

CHNS elemental analysers. Accredit. Qual. Assur. 11, 569–576. https://doi.org/10.

1007/s00769-006-0185-x.

Conca, J.L., Rossman, G.R., 1982. Case hardening of sandstone. Geology 10, 520–523.

https://doi.org/10.1130/0091-7613(1982)10<520:CHOS>2.0.CO;2.

Conca, J.L., Rossman, G.R., 1985. Core softening in cavernously weathered tonalite. J. Geol.

93, 59–73. https://doi.org/10.1086/628919.

Coombs, D.S., Ellis, A.J., Fyfe, W.S., Taylor, A.M., 1959. The zeolite facies, with comments on

the interpretation of hydrothermal syntheses. Geochim. Cosmochim. Acta 17. https://

doi.org/10.1016/0016-7037(59)90079-1 573–107.

Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F.,

Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi,

R., Ross, M., Sheppard, R.A., Tillmanns, E., Vezzalini, G., 1997. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names.

Can. Mineral. 35, 1571–1606.

Desarnaud, J., Bonn, D., Shahidzadeh, N., 2016. The pressure induced by salt crystallization

in confinement. Sci. Rep. 6, 30856. https://doi.org/10.1038/srep30856.

Eklund, J.A., Zhang, H., Viles, H.A., Curteis, T., 2013. Using handheld moisture meters on

limestone: factors affecting performance and guidelines for best practice. Int.

J. Archit. Herit. 7, 207–224. https://doi.org/10.1080/15583058.2011.626491.

Elderfield, H., 1986. Strontium isotope stratigraphy. Paleogeogr. Paleoclimatol. Paleoecol.

57, 71–90. https://doi.org/10.1016/0031-0182(86)90007-6.

Faure, G., Mensing, T.M., 2004. Isotopes, Principles and Applications. 2nd ed. John Wiley &

Sons Inc, New Jersey.

Frolova, J., Ladygin, V., Rychagov, S., Zukhubaya, D., 2014. Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island

arc. Eng. Geol. 183, 80–95. https://doi.org/10.1016/j.enggeo.2014.10.011.

Goudie, A.S., Viles, H., 1997. Salt Weathering Hazards. John Wiley & Sons, Chichester.

Goudie, A.S., Migoň, P., Allison, R.J., Rosser, N., 2002. Sandstone geomorphology of the AlQuwayra area of South Jordan. Zeitschrift für Geomorphol. 46, 365–390. https://doi.

org/10.1127/zfg/46/2002/365.

Hall, K., André, M.-F., 2006. Temperature observations in Antarctic tafoni: implications for

weathering, biological colonization, and tafoni formation. Antarct. Sci. 18, 377–384.

https://doi.org/10.1017/S0954102006000423.

Höllermann, P., 1975. Formen Kavernöser Verwitterung (“Tafoni”) Auf Teneriffa. Catena

2, 385–409. https://doi.org/10.1016/S0341-8162(75)80024-5.

Huinink, H.P., Pel, L., Kopinga, K., 2004. Simulating the growth of tafoni. Earth Surf. Process. Landf. 29, 1225–1233. https://doi.org/10.1002/esp.1087.

Iizumi, S., Otani, S., Hara, K., 1999. Sr and Nd isotope ratios of Middle Miocene volcanic

rocks from Shimane Peninsula, San'in district, Southwest Japan. Mem. Geol. Soc.

Japan. 53, 383–391.

Japan Meteorological Agency. (Accessed 19 March 2021).

Kano, K., Yamaoto, T., Takeuchi, K., 1993. A Miocene island-arc volcanic seamount: the

Takashibiyama Formation, Shimane Peninsula, SW Japan. J. Volcanol. Geotherm.

Res. 59, 101–119. https://doi.org/10.1016/0377-0273(93)90080-B.

Kano, K., Matsuura, H., Sawada, Y., Takeuchi, K., 1998. Geology of the Iawami-Ōda and

Ōura Districts With Geological Sheetmap at 1:50000. Geological Survey of Japan,

Tsukuba (in Japanese with English abstract).

Kejonen, A., Kielosto, S., Lahti, S.I., 1988. Cavernous weathering forms in Finland. Geogr.

Ann. A 70, 315–321. https://doi.org/10.1080/04353676.1988.11880262.

Kelletat, D., 1980. Studies on the age of honeycombs and tafoni features. Catena 7,

317–325. https://doi.org/10.1016/0341-8162(80)90016-8.

Kogure, T., 2019. Analysis of Schmidt hammer rebound test results with repetitive impacts for determining the mechanical characteristics of weathered pyroclastic rock

surfaces: a case study along the Isotake coast, Japan. Bull. Eng. Geol. Environ. 78,

3425–3432. https://doi.org/10.1007/s10064-018-1334-2.

Kogure, T., Aoki, H., Maekado, A., Hirose, T., Matsukura, Y., 2006. Effect of the development

of notches and tension cracks on instability of limestone coastal cliffs in the Ryukyus, Japan. Geomorphology 80, 236–244. https://doi.org/10.1016/j.geomorph.2006.02.

012.

Kogure, T., Zhang, Y., Nishizawa, O., Xue, Z., 2017. Migration mode of brine and supercritical CO2 during steady-state relative permeability measurements at very slow fluid

flow velocity. Geophys. J. Int. 211, 1237–1253. https://doi.org/10.1093/gji/ggx335.

Kogure, T., Zhang, Y., Nishizawa, O., Xue, Z., 2018. Changes in migration mode of brine and

supercritical CO2 in imbibition process under steady flow state of very slow fluid velocities. Geophys. J. Int. 214, 1413–1423. https://doi.org/10.1093/gji/ggy210.

Kogure, T., Naka, Y., Sasaki, K., Endo, S., 2019. Physical and mechanical properties of sandstone and calcareous concretions at the wave-cut bench in Iwami-tatamigaura, a natural monument in Shimane, Japan. J. Japan Soc. Eng. Geol. 59, 446–452. https://doi.

org/10.5110/jjseg.59.446 (in Japanese with English abstract).

Lea, D.W., Mashiotta, T.A., Spero, H.J., 1999. Controls on magnesium and strontium uptake

in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta

63, 2369–2379. https://doi.org/10.1016/S0016-7037(99)00197-0.

Martinho, E., Alegria, F., Dionísio, A., Grangeia, C., Almeida, F., 2012. 3D-resistivity imaging

and distribution of water soluble salts in Portuguese Renaissance stone bas-reliefs.

Eng. Geol. 141–142, 33–44. https://doi.org/10.1016/j.enggeo.2012.04.010.

Matsukura, Y., Aoki, H., 2004. The Schmidt hammer: a brief review and some problems in

geomorphology. Trans. Japan. Geomorph. Union 25, 175–196 (in Japanese with English abstract).

Matsukura, Y., Takahashi, K., 1999. A new technique for rapid and non-destructive measurement of rock-surface moisture content; preliminary application to weathering

studies of sandstone blocks. Eng. Geol. 55, 113–120. https://doi.org/10.1016/S0013-

7952(99)00111-8.

Matsukura, Y., Tanaka, Y., 2000. Effect of rock hardness and moisture content on tafoni

weathering in the granite of Mount Doeg-sung, Korea. Geogr. Ann. A 82, 59–67.

https://doi.org/10.1111/j.0435-3676.2000.00112.x.

McBride, E.F., Picard, M.D., 2000. Origin of development of tafoni inTunnel SpringTuff,

Crystal Peak, Utah, USA. Earth Surf. Process. Landf. 25, 869–879. https://doi.org/10.

1002/1096-9837(200008)25:8<869::AID-ESP104>3.0.CO;2-F.

Mellor, A., Short, J., Kirkby, S.J., 1997. Tafoni in the El Chorro area, Andalucia, southern

Spain. Earth Surf. Process. Landf. 22, 817–833. https://doi.org/10.1002/(SICI)1096-

9837(199709)22:9<817::AID-ESP768>3.0.CO;2-T.

Misumi, H., Ohira, H., 2006. Zeolite alteration and fission track ages reported from Ootacity, Shimane Prefecture, SW Japan. Fission Track News Lett. 19, 19–23 (in Japanese

with English abstract).

Mottershead, D.N., Pye, K., 1994. Tafoni on coastal slopes, South Devon, U.K. Earth Surf.

Process. Landf. 19, 543–563. https://doi.org/10.1002/esp.3290190607.

Mustoe, G.E., 1983. Cavernous weathering in the Capitol Reef Desert, Utah. Earth Surf.

Process. Landf. 8, 517–526. https://doi.org/10.1002/esp.3290080603.

Mustoe, G.E., 2010. Biogenic origin of coastal honeycomb weathering. Earth Surf. Process.

Landf., 424–434 https://doi.org/10.1002/esp.1931.

Navrátil, T., Vařilová, Z., Rohovec, J., 2013. Mobilization of aluminum by the acid percolates within unsaturated zone of sandstones. Environ. Monit. Assess. 185,

7115–7131. https://doi.org/10.1007/s10661-013-3088-4.

Otofuji, Y., Itaya, T., Matsuda, T., 1991. Rapid rotation of Southwest Japan - paleomagnetism and K-Ar ages of Miocene volcanic-rocks of Southwest Japan. Geophys. J. Int.

105, 397–405. https://doi.org/10.1111/j.1365-246X.1991.tb06721.x.

Prebble, M.M., 1967. Cavernous weathering in the Taylor Dry Valley, Victoria Land,

Antarctica. Nature 216, 1194–1195. https://doi.org/10.1038/2161194a0.

Roqué, C., Zarroca, M., Linares, R., 2013. Subsurface initiation of tafoni in granite terrains –

geophysical evidence from NE Spain: geomorphological implications. Geomorphology 196, 94–105. https://doi.org/10.1016/j.geomorph.2012.06.015.

Rothrock, E.P., 1925. On the force of crystallization of calcite. J. Geol. 33, 80–83. https://

www.jstor.org/stable/30059172.

Saidov, T.A., Pe, L.L., Kopinga, K., 2015. Crystallization pressure of sodium sulfate

heptahydrate. Cryst. Growth Des. 15, 2087–2093. https://doi.org/10.1021/

cg501537h.

Sampei, Y., Matsumoto, E., Kamei, T., Tokuoka, T., 1997. Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district,

Southwest Japan. Geochem. J. 31, 245–262. https://doi.org/10.2343/geochemj.31.245.

Sancho, C., Benito, G., 1990. Factors controlling tafoni weathering in the Ebro Basin (NE

Spain). Zeitschrift für Geomorphol. 34, 165–177. http://pascal-francis.inist.fr/vibad/

index.php?action=getRecordDetail&idt=6535833.

Schnepfleitner, H., Sass, O., Fruhmann, S., Viles, H., Goudie, A., 2016. A multi-method investigation of temperature, moisture and salt dynamics in tafoni (Tafraoute,

Morocco). Earth Surf. Process. Landf. 41, 473–485. https://doi.org/10.1002/esp.3838.

Schweigstillová, J., Přikryl, R., Novotná, M., 2009. Isotopic composition of salt efflorescence

from the sandstone castellated rocks of the Bohemian cretaceous Basin (Czech

Republic). Environ. Geol. 58, 217–225. https://doi.org/10.1007/s00254-008-1510-y.

Shtober-Zisu, N., Amasha, H., Frumkin, A., 2017. Inland notches: lithological characteristics and climatic implications of subaerial cavernous landforms in Israel. Earth Surf.

Process. Landf. 42, 1820–1832. https://doi.org/10.1002/esp.4135.

Strini, A., Guglielmin, M., Hall, K., 2008. Tafoni development in a cryotic environment: an

example from Northern Victoria Land, Antarctica. Earth Surf. Process. Landf. 33,

1502–1519. https://doi.org/10.1002/esp.1620 (in Japanese with English abstract).

Sunamura, T., 1992. Geomorphology of Rocky Coasts. John Wiley & Sons, Chichester.

Tesoriero, A.J., Pankow, J.F., 1996. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to

calcite. Geochim. Cosmochim. Acta 60, 1053–1063. https://doi.org/10.1016/0016-

7037(95)00449-1.

Turkington, A.V., 1998. Cavernous weathering in sandstone: lessons to be learned from

natural exposure. Q. J. Eng. Geol. Hydrogeol. 31, 375–383. https://doi.org/10.1144/

GSL.QJEG.1998.031.P4.11.

Turkington, A.V., Paradise, T.R., 2005. Sandstone weathering: a century of research and innovation. Geomorphology 67, 229–253. https://doi.org/10.1016/j.geomorph.2004.09.

028.

Van Kranendonk, M.J., 2006. Volcanic degassing, hydrothermal circulation and the

flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma

rocks of the Pilbara Supergroup, Pilbara CratonWestern Australia. Earth-Sci. Rev. 74,

197–240. https://doi.org/10.1016/j.earscirev.2005.09.005.

Viles, H.A., Goudie, A.S., 2004. Biofilms and case hardening on sandstones from AlQuwayra, Jordan. Earth Surf. Process. Landf. 29, 1473–1485. https://doi.org/10.1002/

esp.1134.

Wasylenki, L.E., Dove, P.M., Wilson, D.S., De Yoreo, J.J., 2005. Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects. Geochim.

Cosmochim. Acta 69, 3017–3027. https://doi.org/10.1016/j.gca.2004.12.019.

Yoshida, T., 1979. Fluid inclusion study and ore forming process of the Iwami deposit,

Shimane prefecture, Japan. Min. Geol. 29, 21–31 (in Japanese with English abstract).

Young, R.G., 1964. Fracturing of sandstone cobbles in caliche-cemented terrace gravels.

J. Sediment. Petrol. 34, 886–889. https://doi.org/10.1306/74D711D1-2B21-11D7-

8648000102C1865D.

参考文献をもっと見る