リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「> 100-GHz bandwidth directly-modulated lasers and adaptive entropy loading for energy-efficient> 300-Gbps/λ IM/DD systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

> 100-GHz bandwidth directly-modulated lasers and adaptive entropy loading for energy-efficient> 300-Gbps/λ IM/DD systems

Nikolaos-Panteleimon Diamantopoulos Hiroshi Yamazaki Suguru Yamaoka Munehiko Nagatani Hidetaka Nishi Hiromasa Tanobe Ryo Nakao Takuro Fujii Koji Takeda Takaaki Kakitsuka Hitoshi Wakita Minoru Ida Hideyuki Nosaka Fumio Koyama Yutaka Miyamoto Shinji Matsuo 東京工業大学 DOI:https://doi.org/10.1109/JLT.2020.3021727

2021.02.01

概要

We demonstrate DML-based net 325-Gb/s at back- to-back and 321.24-Gb/s after 2-km standard single-mode fiber transmissions for >300-Gbps/λ short-reach optical interconnects. Our net rate performance denotes an increase of ∼34% compared to our previous works, while the pre-FEC rates are >400 Gbps. The DML transmitter is based on a PPR-enhanced, >100-GHz- bandwidth DML, fabricated by our novel membrane-III-V-on- SiC technology. Also wide-band, entropy-loaded DMT modula- tion is utilized based on a novel adaptive algorithm and via a digitally-preprocessed analog multiplexer. These results pave the way towards low-cost and energy-efficient Terabit Ethernet and a significant step towards achieving DML-based 400-Gbps/λ IM/DD systems in the future.

この論文で使われている画像

参考文献

[1] “2020 Ethernet Roadmap,” Ethernet Alliance, 2020, [Online], Available: https://ethernetalliance.org/technology/2020-roadmap/.

[2] S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Adv. Opt. Photon., vol. 10, no. 3, pp. 567–643, Sep. 2018.

[3] Y. Matsui, R. Schatz, D. Che, F. Khan, M. Kwakernaak, and T. Sudo, “Isolator-free >67-GHz bandwidth DFB+R laser with suppressed chirp,” in Proc. OFC, San Diego, CA, USA, 2020, Paper Th4A.1.

[4] Y. M. Di Che, X. Chen, R. Schatz, and P. Iannone, “400-Gb/s direct mod- ulation using a DFB+R laser,” Opt. Lett., vol. 45, no. 12, pp. 3337–3339, Jun. 2020.

[5] S. Yamaoka et al., “239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC,” in Proc. ECOC, Dublin, Ireland, 2019, Paper PD.2.1.

[6] S. Yamaoka et al., “High-temperature continuous-wave operation of 1.3- µm membrane distributed reflector lasers on SiC,” in Proc. CLEO, San Jose, CA, USA, 2019, Paper STu3N.6.

[7] H. Yamazaki et al., “IMDD Transmission at net data rate of 333 Gb/s using over-100-GHz-bandwidth analog multiplexer and Mach-Zehnder modu- lator,” J. Lightwav. Technol., vol. 37, no. 8, pp. 1772–1778, Apr. 2019.

[8] H. Yamazaki et al., “Net-400-Gbps PS-PAM transmission using inte- grated AMUX-MZM,” Opt. Express, vol. 18, no. 27, pp. 25544–25550, Sep. 2019.

[9] M. Nagatani et al., “An over-110-GHz-bandwidth 2:1 analog multiplexer in 0.25-µm InP DHBT technology,” in Proc. IMS, Philadelphia, PA, USA, 2018, Paper We2A-1.

[10] Xi Chen, J. Chandrasekhar, Cho, and P. Winzer, “Single-wavelength and single-photodiode entropy-loaded 554-Gb/s transmission over 22-km SMF,” in Proc. OFC, San Diego, CA, USA, 2019, Paper Th4B.5.

[11] D. Che and W. Shieh, “Approaching the capacity of colored-SNR optical channels by multicarrier entropy loading,” J. Lightw. Technol., vol. 36, no. 1, pp. 68–78, Jan. 2018.

[12] D. Che and W. Shieh, “Squeezing out the last few bits from band- limited channels with entropy loading,” Opt. Express, vol. 27, no. 7, pp. 9321–9329 Apr. 2019.

[13] C. Kottke, C. Caspar, V. Jungnickel, R. Freund, M. Agustin, and N. N. Ledentsov, “High speed 160 Gb/s DMT VCSEL transmission using pre- equalization,” in Proc. OFC 2017, Los Angeles, CA, USA, 2017, Paper W4I.7.

[14] N. P. Diamantopoulos, T. Fujii, H. Nishi, K. Takeda, T. Kakitsuka, and S. Matsuo, “Energy-efficient 120-Gbps DMT transmission using a 1.3-µm membrane laser on Si,” in Proc. OFC, San Diego, CA, USA, 2018, Paper M2D.5.

[15] F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609, Apr. 2016.

[16] N. P. Diamantopoulos et al., “Net 321.24-Gb/s IMDD transmission based on a >100-GHz bandwidth directly-modulated laser,” in Proc. OFC, San Diego, CA, USA, 2020, Paper Th4C.1.

[17] J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mu- tual information as a forward error correction threshold for probabilis- tically shaped QAM,” in Proc. ECOC, Gothenburg, Sweden, 2017, Paper M.2.D.2.

[18] A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721, Feb. 2016.

[19] T. Kobayashi et al., “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. OFC, San Diego, CA, USA, 2019, Paper Th4B.2.

[20] T. Fujii et al., “1.3-µm directly modulated membrane laser array employ- ing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in Proc. ECOC, Düsseldorf, Germany, 2016, Paper Th.3.A.2.

[21] H. Nishi et al., “Membrane distributed-reflector laser integrated with SiOx- based spot-size converter on Si substrate,” Opt. Express, vol. 24, no. 16, pp. 18346–18352, Aug. 2016.

参考文献をもっと見る