リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optically addressable universal holonomic quantum gates on diamond spins」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optically addressable universal holonomic quantum gates on diamond spins

Yuhei Sekiguchi Kazuki Matsushita Yoshiki Kawasaki Hideo Kosaka 20361199 横浜国立大学

2022.07.28

概要

The ability to individually control the numerous spins in a solid-state crystal is a promising technology for the development of large-scale quantum processors and memories. A localized laser field offers spatial selectivity for electron spin manipulation through spin–obit coupling, but it has been difficult to simultaneously achieve precise and universal manipulation. Here, we demonstrate microwave-driven holonomic quantum gates on an optically selected electron spin in a nitrogen-vacancy centre in diamond. The electron spin is precisely manipulated with global microwaves tuned to the frequency shift induced by the local optical Stark effect. We show the universality of the operations, including state initialization, preparation, readout and echo. We also generate optically addressable entanglement between the electron and adjacent nitrogen nuclear spin. High-fidelity operations are achieved by applying amplitude-alternating pulses, which are tolerant to fluctuations in microwave intensity and detuning. These techniques enable site-selective quantum teleportation transfer from a photon to a nuclear spin memory, paving the way for the realization of distributed quantum computers and the quantum Internet with large-scale quantum storage.

この論文で使われている画像

参考文献

1. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Materials 8, 383–387 (2009).

2. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Communications 4, 1743 (2013).

3. Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nature Communications 9, 2552 (2018).

4. Herbschleb, E. D. et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nature Communications 10, 3766 (2019).

5. Bradley, C. E. et al. A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute. Physical Review X 9, 031045 (2019).

6. Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B 100, 165428 (2019).

7. Pioro-Ladrière, M., Tokura, Y., Obata, T., Kubo, T. & Tarucha, S. Micromagnets for coherent control of spin- charge qubit in lateral quantum dots. Applied Physics Letters 90, 024105 (2007).

8. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Physics 5, 903–908 (2009).

9. Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nature Nanotechnology 10, 859–864 (2015).

10. Yamamoto, T. et al. Strongly coupled diamond spin qubits by molecular nitrogen implantation. Physical Review B 88, 201201 (2013).

11. Haruyama, M. et al. Triple nitrogen-vacancy centre fabrication by C5N4Hn ion implantation. Nature Communications 10, 2664 (2019).

12. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574– 578 (2011).

13. Irber, D. M. et al. Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nature Communications 12, 532 (2021).

14. Golter, D. A. & Wang, H. Optically Driven Rabi Oscillations and Adiabatic Passage of Single Electron Spins in Diamond. Physical Review Letters 112, 116403 (2014).

15. Bassett, L. C. et al. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science (1979) 345, 1333–1337 (2014).

16. Chu, Y., Markham, M., Twitchen, D. J. & Lukin, M. D. All-optical control of a single electron spin in diamond. Physical Review A 91, 021801 (2015).

17. Goldman, M. L., Patti, T. L., Levonian, D., Yelin, S. F. & Lukin, M. D. Optical Control of a Single Nuclear Spin in the Solid State. Physical Review Letters 124, 153203 (2020).

18. Lekavicius, I., Golter, D. A., Oo, T. & Wang, H. Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin. Physical Review Letters 119, 063601 (2017).

19. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot. Science (1979) 320, 349–352 (2008).

20. Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science (1979) 330, 1212–1215 (2010).

21. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

22. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Physics 5, 262–266 (2009).

23. Kodriano, Y. et al. Complete control of a matter qubit using a single picosecond laser pulse. Physical Review B 85, 241304 (2012).

24. Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nature Photonics 10, 184–189 (2016).

25. Sekiguchi, Y., Niikura, N., Kuroiwa, R., Kano, H. & Kosaka, H. Optical holonomic single quantum gates with a geometric spin under a zero field. Nature Photonics 11, 309–314 (2017).

26. Zhou, B. B. et al. Holonomic Quantum Control by Coherent Optical Excitation in Diamond. Physical Review Letters 119, 140503 (2017).

27. Ishida, N. et al. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. Optics Letters 43, 2380 (2018).

28. Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nature Photonics 10, 507–511 (2016).

29. Tsurumoto, K., Kuroiwa, R., Kano, H., Sekiguchi, Y. & Kosaka, H. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Communications Physics 2, (2019).

30. Sekiguchi, Y., Okumura, S. & Kosaka, H. Backward propagating quantum repeater protocol with multiple quantum memories. Preprint at https://arxiv.org/abs/2205.04243 (2022).

31. Nagata, K., Kuramitani, K., Sekiguchi, Y. & Kosaka, H. Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nature Communications 9, 3227 (2018).

32. Sjöqvist, E. et al. Non-adiabatic holonomic quantum computation. New Journal of Physics 14, 103035 (2012).

33. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

34. Vasconcelos, R. et al. Scalable spin–photon entanglement by time-to-polarization conversion. npj Quantum Information 6, 9 (2020).

35. Sekiguchi, Y. et al. Geometric entanglement of a photon and spin qubits in diamond. Communications Physics 4, 264 (2021).

36. Tycko, R., Pines, A. & Guckenheimer, J. Fixed point theory of iterative excitation schemes in NMR. The Journal of Chemical Physics 83, 2775–2802 (1985).

37. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance 172, 296–305 (2005).

38. Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nature Communications 5, 3371 (2014).

39. Lukin, M. D. & Hemmer, P. R. Quantum Entanglement via Optical Control of Atom-Atom Interactions. Physical Review Letters 84, 2818–2821 (2000).

40. Hettich, C. et al. Nanometer Resolution and Coherent Optical Dipole Coupling of Two Individual Molecules. Science (1979) 298, 385–389 (2002).

41. Chen, Y. C. et al. Laser writing of coherent colour centres in diamond. Nature Photonics 11, 77–80 (2017).

42. Ruf, M. et al. Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes. Nano Letters 19, 3987–3992 (2019).

43. Yurgens, V. et al. Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens. ACS Photonics 8, 1726–1734 (2021).

44. Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nature Methods 9, 201–208 (2012).

45. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science (1979) 354, 1024–1027 (2016).

46. Jiang, N. et al. Experimental realization of 105-qubit random access quantum memory. npj Quantum Information 5, 28 (2019).

参考文献をもっと見る