リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Primordial black hole formation in Affleck-Dine baryogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Primordial black hole formation in Affleck-Dine baryogenesis

長谷川, 史憲 東京大学 DOI:10.15083/0002001866

2021.10.04

概要

Gravitational wave (GW) events detected by LIGO-Virgo collaboration suggest an existence of black holes as heavy as ~ 30M⊙. While there are disputes about the possibility of the formation of such massive black holes by the stellar evolution, Primordial Black Holes (PBHs) are one of the leading candidates which explain their mass and merger rate. On the other hand, Affleck-Dine baryogenesis is a promising candidate for the origin of baryon asymmetry, where the dynamics is described by flat-directions in the Minimal Supersymmetric Standard Model (MSSM), called Affleck-Dine field. We focus on the fact that the isocurvature perturbations induced by this Affleck-Dine field are transferred into the density perturbation in the late time Universe and can be seeds of PBHs. In this thesis, we propose two scenarios of PBH formation in the Affleck-Dine mechanism. The first one is employing the Affleck-Dine field as "curvaton" field which generates density perturbation independently of the inflaton. We find while this model can consistently explain the LIGO events, the observational constraint on the baryonic isocurvature perturbation has a potential to restrict the model parameters. In the second scenario, as seeds of PBHs, we make use of the high-baryon bubbles (HBBs) which are generated by the special type of Affleck-Dine mechanism. We also find the scenario can explain not only the current GWs events consistently but also the dark matter abundance by the non-topological solitons formed after the Affleck-Dine mechanism, called Q-balls.

参考文献

[1] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].

[2] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116 no. 24, (2016) 241103, arXiv:1606.04855 [gr-qc].

[3] VIRGO, LIGO Scientific Collaboration, B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys. Rev. Lett. 118 no. 22, (2017) 221101, arXiv:1706.01812 [gr-qc].

[4] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence,” Astrophys. J. 851 no. 2, (2017) L35, arXiv:1711.05578 [astro-ph.HE].

[5] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119 no. 14, (2017) 141101, arXiv:1709.09660 [gr-qc].

[6] LIGO Scientific, Virgo Collaboration, B. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 no. 16, (2017) 161101, arXiv:1710.05832 [gr-qc].

[7] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” arXiv:1811.12907 [astro-ph.HE].

[8] K. Belczynski, T. Bulik, C. L. Fryer, A. Ruiter, J. S. Vink, and J. R. Hurley, “On The Maximum Mass of Stellar Black Holes,” Astrophys. J. 714 (2010) 1217–1226, arXiv:0904.2784 [astro-ph.SR].

[9] M. Spera, M. Mapelli, and A. Bressan, “The mass spectrum of compact remnants from the PARSEC stellar evolution tracks,” Mon. Not. Roy. Astron. Soc. 451 no. 4, (2015) 4086–4103, arXiv:1505.05201 [astro-ph.SR].

[10] T. Kinugawa, K. Inayoshi, K. Hotokezaka, D. Nakauchi, and T. Nakamura, “Possible Indirect Confirmation of the Existence of Pop III Massive Stars by Gravitational Wave,” Mon. Not. Roy. Astron. Soc. 442 no. 4, (2014) 2963–2992, arXiv:1402.6672 [astro-ph.HE].

[11] T. Kinugawa, A. Miyamoto, N. Kanda, and T. Nakamura, “The detection rate of inspiral and quasi-normal modes of Population III binary black holes which can confirm or refute the general relativity in the strong gravity region,” Mon. Not. Roy. Astron. Soc. 456 no. 1, (2016) 1093–1114, arXiv:1505.06962 [astro-ph.SR].

[12] T. Ebisuzaki, J. Makino, T. G. Tsuru, Y. Funato, S. F. Portegies Zwart, P. Hut, S. McMillan, S. Matsushita, H. Matsumoto, and R. Kawabe, “Missing link found? – the “runaway” path to supermassive black holes,” Astrophys. J. 562 (2001) L19, arXiv:astro-ph/0106252 [astro-ph].

[13] G. Rauw, M. De Becker, Y. Naze, P. A. Crowther, E. Gosset, H. Sana, K. A. van der Hucht, J. M. Vreux, and P. M. Williams, “WR20a: A Massive cornerstone binary system comprising two extreme early-type stars,” Astron. Astrophys. 420 (2004) L9, arXiv:astro-ph/0404551 [astro-ph].

[14] S. E. Woosley, “The Progenitor of Gw150914,” Astrophys. J. 824 no. 1, (2016) L10, arXiv:1603.00511 [astro-ph.HE].

[15] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G. Riess, “Did LIGO detect dark matter?,” Phys. Rev. Lett. 116 no. 20, (2016) 201301, arXiv:1603.00464 [astro-ph.CO].

[16] S. Clesse and J. Garca-Bellido, “The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO,” Phys. Dark Univ. 15 (2017) 142–147, arXiv:1603.05234 [astro-ph.CO].

[17] A. Kashlinsky, “LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies,” Astrophys. J. 823 no. 2, (2016) L25, arXiv:1605.04023 [astro-ph.CO].

[18] B. Carr, F. Kuhnel, and M. Sandstad, “Primordial Black Holes as Dark Matter,” Phys. Rev. D94 no. 8, (2016) 083504, arXiv:1607.06077 [astro-ph.CO].

[19] Yu. N. Eroshenko, “Gravitational waves from primordial black holes collisions in binary systems,” arXiv:1604.04932 [astro-ph.CO].

[20] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, “Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914,” Phys. Rev. Lett. 117 no. 6, (2016) 061101, arXiv:1603.08338 [astro-ph.CO].

[21] Y. B. Zel’dovich and I. D. Novikov, “The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model,” Soviet Astronomy 10 (1967) 602.

[22] S. Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152 (1971) 75.

[23] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.

[24] B. J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J. 201 (1975) 1.

[25] J. Yokoyama, “Formation of MACHO primordial black holes in inflationary cosmology,” Astron. Astrophys. 318 (1997) 673, arXiv:astro-ph/9509027 [astro-ph].

[26] J. Garcia-Bellido, A. D. Linde, and D. Wands, “Density perturbations and black hole formation in hybrid inflation,” Phys. Rev. D54 (1996) 6040–6058, arXiv:astro-ph/9605094 [astro-ph].

[27] M. Kawasaki, N. Sugiyama, and T. Yanagida, “Primordial black hole formation in a double inflation model in supergravity,” Phys. Rev. D57 (1998) 6050–6056, arXiv:hep-ph/9710259 [hep-ph].

[28] M. Kawasaki, A. Kusenko, Y. Tada, and T. T. Yanagida, “Primordial black holes as dark matter in supergravity inflation models,” Phys. Rev. D94 no. 8, (2016) 083523, arXiv:1606.07631 [astro-ph.CO].

[29] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments,” Phys. Rev. D95 no. 12, (2017) 123510, arXiv:1611.06130 [astro-ph.CO].

[30] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “Inflationary Primordial Black Holes as All Dark Matter,” Phys. Rev. D96 no. 4, (2017) 043504, arXiv:1701.02544 [astro-ph.CO].

[31] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “O(10)M◉ primordial black holes and string axion dark matter,” arXiv:1709.07865 [astro-ph.CO].

[32] K. Inomata, M. Kawasaki, K. Mukaida, and T. T. Yanagida, “Double inflation as a single origin of primordial black holes for all dark matter and LIGO observations,” Phys. Rev. D97 no. 4, (2018) 043514, arXiv:1711.06129 [astro-ph.CO].

[33] K. Kohri, T. Nakama, and T. Suyama, “Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB µ-distortions,” Phys. Rev. D90 no. 8, (2014) 083514, arXiv:1405.5999 [astro-ph.CO].

[34] R. Saito and J. Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102 (2009) 161101, arXiv:0812.4339 [astro-ph]. [Erratum: Phys. Rev. Lett.107,069901(2011)].

[35] R. Saito and J. Yokoyama, “Gravitational-Wave Constraints on the Abundance of Primordial Black Holes,” Prog. Theor. Phys. 123 (2009) 867, arXiv:0912.5317 [astro-ph].

[36] NANOGrav Collaboration, Z. Arzoumanian et al., “The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background,” Astrophys. J. 821 no. 1, (2016) 13, arXiv:1508.03024 [astro-ph.GA].

[37] L. Lentati et al., “European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background,” Mon. Not. Roy. Astron. Soc. 453 no. 3, (2015) 2576–2598, arXiv:1504.03692 [astro-ph.CO].

[38] R. M. Shannon et al., “Gravitational waves from binary supermassive black holes missing in pulsar observations,” Science 349 no. 6255, (2015) 1522–1525, arXiv:1509.07320 [astro-ph.CO].

[39] K. Enqvist and M. S. Sloth, “Adiabatic CMB perturbations in pre - big bang string cosmology,” Nucl. Phys. B626 (2002) 395–409, arXiv:hep-ph/0109214 [hep-ph].

[40] D. H. Lyth and D. Wands, “Generating the curvature perturbation without an inflaton,” Phys. Lett. B524 (2002) 5–14, arXiv:hep-ph/0110002 [hep-ph].

[41] T. Moroi and T. Takahashi, “Effects of cosmological moduli fields on cosmic microwave background,” Phys. Lett. B522 (2001) 215–221, arXiv:hep-ph/0110096 [hep-ph]. [Erratum: Phys. Lett.B539,303(2002)].

[42] J. R. Espinosa, D. Racco, and A. Riotto, “Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter,” Phys. Rev. Lett. 120 no. 12, (2018) 121301, arXiv:1710.11196 [hep-ph].

[43] C. Gross, A. Polosa, A. Strumia, A. Urbano, and W. Xue, “Dark Matter in the Standard Model?,” Phys. Rev. D98 no. 6, (2018) 063005, arXiv:1803.10242 [hep-ph].

[44] M. Kawasaki, N. Kitajima, and T. T. Yanagida, “Primordial black hole formation from an axionlike curvaton model,” Phys. Rev. D87 no. 6, (2013) 063519, arXiv:1207.2550 [hep-ph].

[45] K. Ando, K. Inomata, M. Kawasaki, K. Mukaida, and T. T. Yanagida, “Primordial black holes for the LIGO events in the axionlike curvaton model,” Phys. Rev. D97 no. 12, (2018) 123512, arXiv:1711.08956 [astro-ph.CO].

[46] K. Ando, M. Kawasaki, and H. Nakatsuka, “Formation of primordial black holes in an axionlike curvaton model,” Phys. Rev. D98 no. 8, (2018) 083508, arXiv:1805.07757 [astro-ph.CO].

[47] I. Affleck and M. Dine, “A New Mechanism for Baryogenesis,” Nucl. Phys. B249 (1985) 361–380.

[48] M. Dine, L. Randall, and S. D. Thomas, “Baryogenesis from flat directions of the supersymmetric standard model,” Nucl. Phys. B458 (1996) 291–326, arXiv:hep-ph/9507453 [hep-ph].

[49] K. Enqvist, A. Jokinen, S. Kasuya, and A. Mazumdar, “MSSM flat direction as a curvaton,” Phys. Rev. D68 (2003) 103507, arXiv:hep-ph/0303165 [hep-ph].

[50] K. Hamaguchi, M. Kawasaki, T. Moroi, and F. Takahashi, “Curvatons in supersymmetric models,” Phys. Rev. D69 (2004) 063504, arXiv:hep-ph/0308174 [hep-ph].

[51] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D23 (1981) 347–356. [Adv. Ser. Astrophys. Cosmol.3,139(1987)].

[52] A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. B91 (1980) 99–102. [,771(1980)].

[53] K. Sato, “First Order Phase Transition of a Vacuum and Expansion of the Universe,” Mon. Not. Roy. Astron. Soc. 195 (1981) 467–479.

[54] B. Fields and S. Sarkar, “Big-Bang nucleosynthesis (2006 Particle Data Group mini-review),” arXiv:astro-ph/0601514 [astro-ph].

[55] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[56] A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35. [Usp. Fiz. Nauk161,no.5,61(1991)].

[57] A. G. Cohen and D. B. Kaplan, “SPONTANEOUS BARYOGENESIS,” Nucl. Phys. B308 (1988) 913–928.

[58] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. 155B (1985) 36.

[59] M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys. Lett. B174 (1986) 45–47.

[60] J. A. Harvey and M. S. Turner, “Cosmological baryon and lepton number in the presence of electroweak fermion number violation,” Phys. Rev. D42 (1990) 3344–3349.

[61] T. Gherghetta, C. F. Kolda, and S. P. Martin, “Flat directions in the scalar potential of the supersymmetric standard model,” Nucl. Phys. B468 (1996) 37–58, arXiv:hep-ph/9510370 [hep-ph].

[62] H. Murayama and T. Yanagida, “Leptogenesis in supersymmetric standard model with right-handed neutrino,” Phys. Lett. B322 (1994) 349–354, arXiv:hep-ph/9310297 [hep-ph].

[63] M. Dine, L. Randall, and S. D. Thomas, “Baryogenesis from flat directions of the supersymmetric standard model,” Nucl. Phys. B458 (1996) 291–326, arXiv:hep-ph/9507453 [hep-ph].

[64] M. Kawasaki, M. Yamaguchi, and T. Yanagida, “Natural chaotic inflation in supergravity,” Phys. Rev. Lett. 85 (2000) 3572–3575, arXiv:hep-ph/0004243 [hep-ph].

[65] R. Allahverdi, B. A. Campbell, and J. R. Ellis, “Reheating and supersymmetric flat direction baryogenesis,” Nucl. Phys. B579 (2000) 355–375, arXiv:hep-ph/0001122 [hep-ph].

[66] A. Anisimov and M. Dine, “Some issues in flat direction baryogenesis,” Nucl. Phys. B619 (2001) 729–740, arXiv:hep-ph/0008058 [hep-ph].

[67] M. Fujii, K. Hamaguchi, and T. Yanagida, “Reheating temperature independence of cosmological baryon asymmetry in Affleck-Dine leptogenesis,” Phys. Rev. D63 (2001) 123513, arXiv:hep-ph/0102187 [hep-ph].

[68] S. Kasuya, M. Kawasaki, and F. Takahashi, “Isocurvature fluctuations in Affleck-Dine mechanism and constraints on inflation models,” JCAP 0810 (2008) 017, arXiv:0805.4245 [hep-ph].

[69] M. Kawasaki and F. Takahashi, “Adiabatic and isocurvature fluctuations of Affleck-Dine field in D term inflation model,” Phys. Lett. B516 (2001) 388–394, arXiv:hep-ph/0105134 [hep-ph].

[70] K. Enqvist and J. McDonald, “Observable isocurvature fluctuations from the Affleck-Dine condensate,” Phys. Rev. Lett. 83 (1999) 2510–2513, arXiv:hep-ph/9811412 [hep-ph].

[71] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XX. Constraints on inflation,” Astron. Astrophys. 594 (2016) A20, arXiv:1502.02114 [astro-ph.CO].

[72] M. Endo, M. Kawasaki, F. Takahashi, and T. T. Yanagida, “Inflaton decay through supergravity effects,” Phys. Lett. B642 (2006) 518–524, arXiv:hep-ph/0607170 [hep-ph].

[73] M. Endo, F. Takahashi, and T. T. Yanagida, “Inflaton Decay in Supergravity,” Phys. Rev. D76 (2007) 083509, arXiv:0706.0986 [hep-ph].

[74] T. Moroi, Effects of the gravitino on the inflationary universe. PhD thesis, Tohoku U., 1995. arXiv:hep-ph/9503210 [hep-ph].

[75] A. Hook, R. McGehee, and H. Murayama, “Cosmologically Viable Low-energy Supersymmetry Breaking,” arXiv:1801.10160 [hep-ph].

[76] F. Hasegawa and M. Kawasaki, “Oscillating Affleck-Dine condensate and its cosmological implications,” Phys. Rev. D96 no. 6, (2017) 063518, arXiv:1706.08659 [hep-ph].

[77] J. C. Niemeyer and K. Jedamzik, “Near-critical gravitational collapse and the initial mass function of primordial black holes,” Phys. Rev. Lett. 80 (1998) 5481–5484, arXiv:astro-ph/9709072 [astro-ph].

[78] J. C. Niemeyer and K. Jedamzik, “Dynamics of primordial black hole formation,” Phys. Rev. D59 (1999) 124013, arXiv:astro-ph/9901292 [astro-ph].

[79] I. Musco, J. C. Miller, and L. Rezzolla, “Computations of primordial black hole formation,” Class. Quant. Grav. 22 (2005) 1405–1424, arXiv:gr-qc/0412063 [gr-qc].

[80] I. Musco, J. C. Miller, and A. G. Polnarev, “Primordial black hole formation in the radiative era: Investigation of the critical nature of the collapse,” Class. Quant. Grav. 26 (2009) 235001, arXiv:0811.1452 [gr-qc].

[81] I. Musco and J. C. Miller, “Primordial black hole formation in the early universe: critical behaviour and self-similarity,” Class. Quant. Grav. 30 (2013) 145009, arXiv:1201.2379 [gr-qc].

[82] T. Harada, C.-M. Yoo, and K. Kohri, “Threshold of primordial black hole formation,” Phys. Rev. D88 no. 8, (2013) 084051, arXiv:1309.4201 [astro-ph.CO]. [Erratum: Phys. Rev.D89,no.2,029903(2014)].

[83] T. Nakama, T. Harada, A. G. Polnarev, and J. Yokoyama, “Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation,” JCAP 1401 (2014) 037, arXiv:1310.3007 [gr-qc].

[84] M. Shibata and M. Sasaki, “Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity,” Phys. Rev. D60 (1999) 084002, arXiv:gr-qc/9905064 [gr-qc].

[85] A. M. Green, A. R. Liddle, K. A. Malik, and M. Sasaki, “A New calculation of the mass fraction of primordial black holes,” Phys. Rev. D70 (2004) 041502, arXiv:astro-ph/0403181 [astro-ph].

[86] W. H. Press and P. Schechter, “Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation,” Astrophys. J. 187 (1974) 425–438.

[87] A. Barnacka, J.-F. Glicenstein, and R. Moderski, “New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts,” Phys. Rev. D86 no. 6, (2012) 043001, arXiv:1204.2056 [astro-ph.CO].

[88] H. Niikura, M. Takada, N. Yasuda, R. H. Lupton, T. Sumi, S. More, A. More, M. Oguri, and M. Chiba, “Microlensing constraints on primordial black holes with the Subaru/HSC Andromeda observation,” arXiv:1701.02151 [astro-ph.CO].

[89] EROS-2 Collaboration, P. Tisserand et al., “Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds,” Astron. Astrophys. 469 (2007) 387–404, arXiv:astro-ph/0607207 [astro-ph].

[90] K. Griest, A. M. Cieplak, and M. J. Lehner, “New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data,” Phys. Rev. Lett. 111 no. 18, (2013) 181302.

[91] P. W. Graham, S. Rajendran, and J. Varela, “Dark Matter Triggers of Supernovae,” Phys. Rev. D92 no. 6, (2015) 063007, arXiv:1505.04444 [hep-ph].

[92] T. D. Brandt, “Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies,” Astrophys. J. 824 no. 2, (2016) L31, arXiv:1605.03665 [astro-ph.GA].

[93] Y. Ali-Haïmoud and M. Kamionkowski, “Cosmic microwave background limits on accreting primordial black holes,” Phys. Rev. D95 no. 4, (2017) 043534, arXiv:1612.05644 [astro-ph.CO].

[94] V. Poulin, P. D. Serpico, F. Calore, S. Clesse, and K. Kohri, “CMB bounds on disk-accreting massive primordial black holes,” Phys. Rev. D96 no. 8, (2017) 083524, arXiv:1707.04206 [astro-ph.CO].

[95] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D81 (2010) 104019, arXiv:0912.5297 [astro-ph.CO].

[96] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments,” Phys. Rev. D95 no. 12, (2017) 123510, arXiv:1611.06130 [astro-ph.CO].

[97] K. Ando, K. Inomata, and M. Kawasaki, “Primordial black holes and uncertainties in the choice of the window function,” Phys. Rev. D97 no. 10, (2018) 103528, arXiv:1802.06393 [astro-ph.CO].

[98] T. Fujita and K. Harigaya, “Hubble induced mass after inflation in spectator field models,” JCAP 1612 no. 12, (2016) 014, arXiv:1607.07058 [astro-ph.CO].

[99] A. Pawl, “Decay of Affleck-Dine condensates with application to Q-balls,” Phys. Lett. B581 (2004) 231–235, arXiv:hep-ph/0411363 [hep-ph].

[100] K. Kohri, T. Nakama, and T. Suyama, “Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB µ-distortions,” Phys. Rev. D90 no. 8, (2014) 083514, arXiv:1405.5999 [astro-ph.CO].

[101] K. Inomata, M. Kawasaki, A. Kusenko, and L. Yang, “Big Bang Nucleosynthesis Constraint on Baryonic Isocurvature Perturbations,” JCAP 1812 no. 12, (2018) 003, arXiv:1806.00123 [astro-ph.CO].

[102] E. O. Zavarygin, J. K. Webb, S. Riemer-Sørensen, and V. Dumont, “Primordial deuterium abundance at zabs = 2:504 towards Q1009+2956,” J. Phys. Conf. Ser. 1038 no. 1, (2018) 012012, arXiv:1801.04704 [astro-ph.CO].

[103] R. I. Epstein, J. M. Lattimer, and D. N. Schramm, “The Origin of deuterium,” Nature 263 (1976) 198–202.

[104] F. Hasegawa and M. Kawasaki, “Cogenesis of LIGO Primordial Black Holes and Dark Matter,” arXiv:1711.00990 [astro-ph.CO].

[105] F. Hasegawa and M. Kawasaki, “Primordial Black Holes from Affleck-Dine Mechanism,” arXiv:1807.00463 [astro-ph.CO].

[106] A. Dolgov and J. Silk, “Baryon isocurvature fluctuations at small scales and baryonic dark matter,” Phys. Rev. D47 (1993) 4244–4255.

[107] A. D. Dolgov, M. Kawasaki, and N. Kevlishvili, “Inhomogeneous baryogenesis, cosmic antimatter, and dark matter,” Nucl. Phys. B807 (2009) 229–250, arXiv:0806.2986 [hep-ph].

[108] S. Blinnikov, A. Dolgov, N. K. Porayko, and K. Postnov, “Solving puzzles of GW150914 by primordial black holes,” JCAP 1611 no. 11, (2016) 036, arXiv:1611.00541 [astro-ph.HE].

[109] A. Vilenkin and L. H. Ford, “Gravitational Effects upon Cosmological Phase Transitions,” Phys. Rev. D26 (1982) 1231.

[110] A. A. Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations,” Phys. Lett. 117B (1982) 175–178.

[111] A. D. Linde, “Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario,” Phys. Lett. 116B (1982) 335–339.

[112] D. J. H. Chung, E. W. Kolb, and A. Riotto, “Production of massive particles during reheating,” Phys. Rev. D60 (1999) 063504, arXiv:hep-ph/9809453 [hep-ph].

[113] G. F. Giudice, E. W. Kolb, and A. Riotto, “Largest temperature of the radiation era and its cosmological implications,” Phys. Rev. D64 (2001) 023508, arXiv:hep-ph/0005123 [hep-ph].

[114] K. Mukaida and M. Yamada, “Thermalization Process after Inflation and Effective Potential of Scalar Field,” JCAP 1602 no. 02, (2016) 003, arXiv:1506.07661 [hep-ph].

[115] S. Kasuya and M. Kawasaki, “Q ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge mediated SUSY breaking?,” Phys. Rev. D64 (2001) 123515, arXiv:hep-ph/0106119 [hep-ph].

[116] S. Kasuya and M. Kawasaki, “A New type of stable Q balls in the gauge mediated SUSY breaking,” Phys. Rev. Lett. 85 (2000) 2677–2680, arXiv:hep-ph/0006128 [hep-ph].

[117] B. J. Carr and T. Harada, “Separate universe problem: 40 years on,” Phys. Rev. D91 no. 8, (2015) 084048, arXiv:1405.3624 [astro-ph.CO].

[118] E. Cotner and A. Kusenko, “Primordial black holes from supersymmetry in the early universe,” Phys. Rev. Lett. 119 no. 3, (2017) 031103, arXiv:1612.02529 [astro-ph.CO].

[119] E. Cotner and A. Kusenko, “Primordial black holes from scalar field evolution in the early universe,” Phys. Rev. D96 no. 10, (2017) 103002, arXiv:1706.09003 [astro-ph.CO].

[120] K. Enqvist and J. McDonald, “Q balls and baryogenesis in the MSSM,” Phys. Lett. B425 (1998) 309–321, arXiv:hep-ph/9711514 [hep-ph].

[121] K. Enqvist and J. McDonald, “B - ball baryogenesis and the baryon to dark matter ratio,” Nucl. Phys. B538 (1999) 321–350, arXiv:hep-ph/9803380 [hep-ph].

[122] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, “Big-Bang Nucleosynthesis and Gravitino,” Phys. Rev. D78 (2008) 065011, arXiv:0804.3745 [hep-ph].

[123] Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[124] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, and H. Veermäe, “Primordial black hole constraints for extended mass functions,” Phys. Rev. D96 no. 2, (2017) 023514, arXiv:1705.05567 [astro-ph.CO].

[125] E. Witten, “Cosmic Separation of Phases,” Phys. Rev. D30 (1984) 272–285.

[126] C. Alcock and E. Farhi, “The Evaporation of Strange Matter in the Early Universe,” Phys. Rev. D32 (1985) 1273.

[127] K.-i. Iso, H. Kodama, and K. Sato, “Formation of Isothermal Density Fluctuations in the Cosmological Quark - Hadron Phase Transition,” Phys. Lett. 169B (1986) 337–342.

[128] A. de Gouvea, T. Moroi, and H. Murayama, “Cosmology of supersymmetric models with low-energy gauge mediation,” Phys. Rev. D56 (1997) 1281–1299, arXiv:hep-ph/9701244 [hep-ph].

[129] T. Moroi, H. Murayama, and M. Yamaguchi, “Cosmological constraints on the light stable gravitino,” Phys. Lett. B303 (1993) 289–294.

[130] A. Kusenko, V. Kuzmin, M. E. Shaposhnikov, and P. G. Tinyakov, “Experimental signatures of supersymmetric dark matter Q balls,” Phys. Rev. Lett. 80 (1998) 3185–3188, arXiv:hep-ph/9712212 [hep-ph].

[131] S. Kasuya, M. Kawasaki, and T. T. Yanagida, “IceCube potential for detecting Q-ball dark matter in gauge mediation,” PTEP 2015 no. 5, (2015) 053B02, arXiv:1502.00715 [hep-ph].

[132] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe,” Phys. Rev. D28 (1983) 679.

[133] A. R. Liddle and D. H. Lyth, “COBE, gravitational waves, inflation and extended inflation,” Phys. Lett. B291 (1992) 391–398, arXiv:astro-ph/9208007 [astro-ph].

[134] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].

[135] S. R. Coleman, “Q Balls,” Nucl. Phys. B262 (1985) 263. [Erratum: Nucl. Phys.B269,744(1986)].

[136] A. Kusenko, “Small Q balls,” Phys. Lett. B404 (1997) 285, arXiv:hep-th/9704073 [hep-th].

[137] R. Banerjee and K. Jedamzik, “On B-ball dark matter and baryogenesis,” Phys. Lett. B484 (2000) 278–282, arXiv:hep-ph/0005031 [hep-ph]

参考文献をもっと見る