リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Utility of magnetic resonance imaging in pancreatic ductal adenocarcinoma evaluation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Utility of magnetic resonance imaging in pancreatic ductal adenocarcinoma evaluation

任 海楠 東北大学

2022.03.25

概要

Background: The prognosis of pancreatic ductal adenocarcinoma (PDAC) is extremely poor because most patients are diagnosed at advanced stages and unresectable. PDAC sometimes shares similar radiological features with mass-forming autoimmune pancreatitis (AIP). Magnetic resonance imaging (MRI) plays an important role in the diagnosis of PDAC for its superior soft-tissue contrast. The most used non-contrast pancreatic MRI sequences include T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) with quantitative apparent diffusion coefficient (ADC) map, and magnetic resonance cholangiopancreatography (MRCP). To our knowledge, no study has proposed an interpretation model using Boolean logistic operators “OR” or “AND” based on combinations of findings on these sequences to help making clinical judgement for small PDAC screening. Neither no study has evaluated the diagnostic performance of multiple ADC parameters by region of interest (ROI) methods in differentiating PDAC from mass-forming AIP. The purpose of this study was to propose an appropriate interpretation model for small PDAC screening (Part Ⅰ) and to identify effective quantitative ADC parameters for differential diagnosis between PDAC and mass-forming AIP (Part Ⅱ).

Materials and methods: In Part Ⅰ, thirty consecutive patients with surgery confirmed small PDAC (≤20 mm) and 302 patients without pancreatic abnormality were enrolled. I evaluated the presence of pancreatic masses on T1WI, T2WI, and DWI, and the abnormality of the main pancreatic duct (MPD) on T2WI and MRCP. Multivariate logistic regression analysis was performed to select significant sequences for discriminating the small PDAC and control groups. Boolean operators “OR” or “AND” were used to construct combinations of findings. Diagnostic performances of these sequences and combinations were evaluated by X2 tests. In Part Ⅱ, one hundred and fortyfour patients with PDAC and 23 patients with mass-forming AIP underwent diffusionweighted imaging with b-values of 0 s/mm2 and 800 s/mm2 . The minimum, maximum, and mean ADC values obtained by placing ROIs within lesions and percentile ADC values (10th, 25th, 50th, 75th, and 90th) from entire-lesion histogram analysis were compared between the two groups using Mann–Whitney U tests. The diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis.

Results: In Part Ⅰ, multivariate logistic regression analysis showed that T1WI and DWI for detecting the presence of masses and MRCP for evaluating MPD abnormality were significantly associated with differentiation between the two groups (p = 0.0002, p = 0.0484 and p < 0.0001, respectively). The combination of findings on “T1WI or DWI or MRCP” achieved the highest sensitivity of 96.7% and negative predictive value of 99.6%. In Part Ⅱ, the ROC curve analysis showed that the maximum ADC value had the highest diagnostic performance (0.92), while the minimum ADC value had the lowest diagnostic performance (0.72). The AUC was lowest in 10th percentile ADC value and highest in 90th percentile value. The AUC of percentile ADC values increased along with the increase of percentile values.

Conclusions: The interpretation model “T1WI or DWI or MRCP” might be effective in small PDAC screening. When a mass was identified in the pancreas, quantitative ADC parameters might be helpful in differential diagnosis.

この論文で使われている画像

参考文献

[1] N. Jugniot, R. Bam, E.J. Meuillet, E.C. Unger, R. Paulmurugan, Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer, Bioeng Transl Med. (2020). https://doi.org/10.1002/btm2.10183.

[2] H.S. Park, J.M. Lee, H.K. Choi, S.H. Hong, J.K. Han, B.I. Choi, Preoperative evaluation of pancreatic cancer: Comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT, J. Magn. Reson. Imaging. 30 (2009) 586–595. https://doi.org/10.1002/jmri.21889.

[3] Y. Sugiyama, Y. Fujinaga, M. Kadoya, K. Ueda, M. Kurozumi, H. Hamano, S. Kawa, Characteristic magnetic resonance features of focal autoimmune pancreatitis useful for differentiation from pancreatic cancer, Jpn J Radiol. 30 (2012) 296–309. https://doi.org/10.1007/s11604-011-0047-2.

[4] R. Tsuchiya, Y. Tajima, S. Matsuzaki, S. Onizuka, T. Kanematsu, Early pancreatic cancer, Pancreatology. 1 (2001) 597–603. https://doi.org/10.1159/000055869.

[5] M.I. Canto, F. Harinck, R.H. Hruban, G.J. Offerhaus, J.-W. Poley, I. Kamel, Y. Nio, R.S. Schulick, C. Bassi, I. Kluijt, M.J. Levy, A. Chak, P. Fockens, M. Goggins, M. Bruno, International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer, Gut. 62 (2013) 339–347. https://doi.org/10.1136/gutjnl-2012- 303108.

[6] S. Miura, K. Kume, K. Kikuta, S. Hamada, T. Takikawa, N. Yoshida, S. Hongo, Y. Tanaka, R. Matsumoto, T. Sano, M. Ikeda, T. Furukawa, M. Iseki, M. Unno, A. Masamune, Focal Parenchymal Atrophy and Fat Replacement Are Clues for Early Diagnosis of Pancreatic Cancer with Abnormalities of the Main Pancreatic Duct, Tohoku J. Exp. Med. 252 (2020) 63–71. https://doi.org/10.1620/tjem.252.63.

[7] N.M. Kulkarni, L. Mannelli, M. Zins, P.R. Bhosale, H. Arif-Tiwari, O.R. Brook, E.M. Hecht, F. Kastrinos, Z.J. Wang, E.V. Soloff, P.P. Tolat, G. Sangster, J. Fleming, E.P. Tamm, A.R. Kambadakone, White paper on pancreatic ductal adenocarcinoma from society of abdominal radiology’s disease-focused panel for pancreatic ductal adenocarcinoma: Part II, update on imaging techniques and screening of pancreatic cancer in high-risk individuals, Abdom Radiol. 45 (2020) 729–742. https://doi.org/10.1007/s00261-019-02290-y.

[8] H.J. Park, K.M. Jang, K.D. Song, S.H. Kim, Y.K. Kim, M.J. Cha, S.-Y. Choi, K. Min, Value of unenhanced MRI with diffusion-weighted imaging for detection of primary small (≤20 mm) solid pancreatic tumours and prediction of pancreatic ductal adenocarcinoma, Clinical Radiology. 72 (2017) 1076–1084. https://doi.org/10.1016/j.crad.2017.07.009.

[9] H.F.A. Vasen, M. Wasser, A. van Mil, R.A. Tollenaar, M. Konstantinovski, N.A. Gruis, W. Bergman, F.J. Hes, D.W. Hommes, G.J.A. Offerhaus, H. Morreau, B.A. Bonsing, W.H. de Vos tot Nederveen Cappel, Magnetic Resonance Imaging Surveillance Detects Early-Stage Pancreatic Cancer in Carriers of a p16-Leiden Mutation, Gastroenterology. 140 (2011) 850–856. https://doi.org/10.1053/j.gastro.2010.11.048.

[10] K.A. Harrington, A. Shukla‐Dave, R. Paudyal, R.K.G. Do, MRI of the Pancreas, J Magn Reson Imaging. (2020) jmri.27148. https://doi.org/10.1002/jmri.27148.

[11] K.M. Kang, J.M. Lee, C.-I. Shin, J.H. Baek, S.H. Kim, J.H. Yoon, J.K. Han, B.I. Choi, Added value of diffusion-weighted imaging to MR cholangiopancreatography with unenhanced mr imaging for predicting malignancy or invasiveness of intraductal papillary mucinous neoplasm of the pancreas: DWI of IPMNs, J. Magn. Reson. Imaging. 38 (2013) 555–563. https://doi.org/10.1002/jmri.24022.

[12] H. Irie, H. Honda, K. Kaneko, T. Kuroiwa, K. Yoshimitsu, K. Masuda, Comparison of helical CT and MR imaging in detecting and staging small pancreatic adenocarcinoma, Abdom Imaging. 22 (1997) 429–433. https://doi.org/10.1007/s002619900226.

[13] T. Tirkes, C.O. Menias, K. Sandrasegaran, MR Imaging Techniques for Pancreas, Radiologic Clinics of North America. 50 (2012) 379–393. https://doi.org/10.1016/j.rcl.2012.03.003.

[14] Givant SR, Halmos PR, Introduction to boolean algebras, n.d.

[15] D.L. Finkelberg, W.R. Brugge, Autoimmune Pancreatitis, N Engl j Med. (2006) 7.

[16] A. Khandelwal, D. Inoue, N. Takahashi, Autoimmune pancreatitis: an update, Abdom Radiol. 45 (2020) 1359–1370. https://doi.org/10.1007/s00261-019-02275- x.

[17] S.T. Chari, Diagnosis of autoimmune pancreatitis using its five cardinal features: introducing the Mayo Clinic’s HISORt criteria, J Gastroenterol. 42 (2007) 39–41. https://doi.org/10.1007/s00535-007-2046-8.

[18] K. Okazaki, S. Kawa, T. Kamisawa, T. Ito, K. Inui, H. Irie, A. Irisawa, K. Kubo, K. Notohara, O. Hasebe, Y. Fujinaga, H. Ohara, S. Tanaka, T. Nishino, I. Nishimori, T. Nishiyama, K. Suda, K. Shiratori, T. Shimosegawa, M. Tanaka, Japanese Clinical Guidelines for Autoimmune Pancreatitis:, Pancreas. 38 (2009) 849–866. https://doi.org/10.1097/MPA.0b013e3181b9ee1c.

[19] Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40(3):352-358. https://doi.org/10.1097/MPA.0b013e3182142fd2

[20] S.T. Chari, T.C. Smyrk, M.J. Levy, M.D. Topazian, N. Takahashi, L. Zhang, J.E. Clain, R.K. Pearson, B.T. Petersen, S.S. Vege, Diagnosis of Autoimmune Pancreatitis: The Mayo Clinic Experience, Clinical Gastroenterology and Hepatology. 4 (2006) 1010–1016. https://doi.org/10.1016/j.cgh.2006.05.017.

[21] T. Kamisawa, K. Takuma, H. Anjiki, N. Egawa, T. Hata, M. Kurata, G. Honda, K. Tsuruta, M. Suzuki, N. Kamata, T. Sasaki, Differentiation of Autoimmune Pancreatitis From Pancreatic Cancer by Diffusion-Weighted MRI:, American Journal of Gastroenterology. 105 (2010) 1870–1875. https://doi.org/10.1038/ajg.2010.87.

[22] K. Takuma, Strategy to differentiate autoimmune pancreatitis from pancreas cancer, WJG. 18 (2012) 1015. https://doi.org/10.3748/wjg.v18.i10.1015.

[23] S. Hoshimoto, K. Aiura, M. Tanaka, M. Shito, T. Kakefuda, H. Sugiura, Massforming type 1 autoimmune pancreatitis mimicking pancreatic cancer: Massforming autoimmune pancreatitis, Journal of Digestive Diseases. 17 (2016) 202– 209. https://doi.org/10.1111/1751-2980.12316.

[24] A. Muhi, T. Ichikawa, U. Motosugi, H. Sou, K. Sano, T. Tsukamoto, Z. Fatima, T. Araki, Mass-forming autoimmune pancreatitis and pancreatic carcinoma: Differential diagnosis on the basis of computed tomography and magnetic resonance cholangiopancreatography, and diffusion-weighted imaging findings, J. Magn. Reson. Imaging. 35 (2012) 827–836. https://doi.org/10.1002/jmri.22881.

[25] Working members of Research Committee for Intractable Pancreatic Disease and Japan Pancreas Society, S. Kawa, K. Okazaki, T. Kamisawa, T. Shimosegawa, M. Tanaka, Japanese consensus guidelines for management of autoimmune pancreatitis: II. Extrapancreatic lesions, differential diagnosis, J Gastroenterol. 45 (2010) 355–369. https://doi.org/10.1007/s00535-009-0197-5.

[26] A. Shankar, S. Srinivas, S. Kalyanasundaram, Icicle sign: autoimmune pancreatitis, Abdom Radiol. 45 (2020) 245–246. https://doi.org/10.1007/s00261- 019-02323-6.

[27] M. Barral, B. Taouli, B. Guiu, D.-M. Koh, A. Luciani, R. Manfredi, V. Vilgrain, C. Hoeffel, M. Kanematsu, P. Soyer, Diffusion-weighted MR Imaging of the Pancreas: Current Status and Recommendations, Radiology. 274 (2015) 45–63. https://doi.org/10.1148/radiol.14130778.

[28] S.-Y. Choi, S.H. Kim, T.W. Kang, K.D. Song, H.J. Park, Y.-H. Choi, Differentiating Mass-Forming Autoimmune Pancreatitis From Pancreatic Ductal Adenocarcinoma on the Basis of Contrast-Enhanced MRI and DWI Findings, American Journal of Roentgenology. 206 (2016) 291–300. https://doi.org/10.2214/AJR.15.14974.

[29] T. Taniguchi, H. Kobayashi, K. Nishikawa, E. Iida, Y. Michigami, E. Morimoto, R. Yamashita, K. Miyagi, M. Okamoto, Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis, Jpn J Radiol. 27 (2009) 138–142. https://doi.org/10.1007/s11604-008-0311-2.

[30] M. Hirano, H. Satake, S. Ishigaki, M. Ikeda, H. Kawai, S. Naganawa, DiffusionWeighted Imaging of Breast Masses: Comparison of Diagnostic Performance Using Various Apparent Diffusion Coefficient Parameters, American Journal of Roentgenology. 198 (2012) 717–722. https://doi.org/10.2214/AJR.11.7093.

[31] N. Mori, H. Ota, S. Mugikura, C. Takasawa, J. Tominaga, T. Ishida, M. Watanabe, K. Takase, S. Takahashi, Detection of invasive components in cases of breast ductal carcinoma in situ on biopsy by using apparent diffusion coefficient MR parameters, Eur Radiol. 23 (2013) 2705–2712. https://doi.org/10.1007/s00330- 013-2902-2.

[32] R. Murakami, T. Hirai, T. Sugahara, H. Fukuoka, R. Toya, S. Nishimura, M. Kitajima, T. Okuda, H. Nakamura, N. Oya, J. Kuratsu, Y. Yamashita, Grading Astrocytic Tumors by Using Apparent Diffusion Coefficient Parameters: Superiority of a One- versus Two-Parameter Pilot Method, Radiology. 251 (2009) 838–845. https://doi.org/10.1148/radiol.2513080899.

[33] T. Sugahara, Y. Korogi, M. Kochi, I. Ikushima, Y. Shigematu, T. Hirai, T. Okuda, L. Liang, Y. Ge, Y. Komohara, Y. Ushio, M. Takahashi, Usefulness of diffusionweighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999 Jan;9(1):53-60. https://doi.org/10.1002/(sici)1522-2586(199901)9:13.0.co;2-2.

[34] X. Ma, X. Zhao, H. Ouyang, F. Sun, H. Zhang, C. Zhou, Quantified ADC histogram analysis: a new method for differentiating mass-forming focal pancreatitis from pancreatic cancer, Acta Radiol. 55 (2014) 785–792. https://doi.org/10.1177/0284185113509264.

[35] Y. Kang, S.H. Choi, Y.-J. Kim, K.G. Kim, C.-H. Sohn, J.-H. Kim, T.J. Yun, K.-H. Chang, Gliomas: Histogram Analysis of Apparent Diffusion Coefficient Maps with Standard- or High- b -Value Diffusion-weighted MR Imaging—Correlation with Tumor Grade, Radiology. 261 (2011) 882–890. https://doi.org/10.1148/radiol.11110686.

[36] K.M. Jang, S.H. Kim, Y.K. Kim, M.J. Park, M.H. Lee, J. Hwang, H. Rhim, Imaging features of small (≤3 cm) pancreatic solid tumors on gadoxetic-acidenhanced MR imaging and diffusion-weighted imaging: an initial experience, Magnetic Resonance Imaging. 30 (2012) 916–925. https://doi.org/10.1016/j.mri.2012.02.017.

[37] J.R. Landis, G.G. Koch, The Measurement of Observer Agreement for Categorical Data, Biometrics. 33 (1977) 159. https://doi.org/10.2307/2529310.

[38] R. Tsuchiya, T. Tomioka, K. Izawa, T. Noda, K. Yamamoto, T. Tsunoda, N. Harada, T. Yamaguchi, R. Yoshino, T. Miyamoto, T. Eto, Collective Review of Small Carcinomas of the Pancreas:, Annals of Surgery. 203 (1986) 77–81. https://doi.org/10.1097/00000658-198601000-00013.

[39] S. Kawakami, M. Fukasawa, T. Shimizu, S. Ichikawa, T. Sato, S. Takano, M. Kadokura, H. Shindo, E. Takahashi, S. Hirose, Y. Fukasawa, H. Hayakawa, Y. Nakayama, T. Yamaguchi, T. Inoue, S. Maekawa, H. Kawaida, U. Motosugi, H. Onishi, N. Enomoto, Diffusion-weighted image improves detectability of magnetic resonance cholangiopancreatography for pancreatic ductal adenocarcinoma concomitant with intraductal papillary mucinous neoplasm:, Medicine. 98 (2019) e18039. https://doi.org/10.1097/MD.0000000000018039.

[40] T. Ichikawa, M.S. Peterson, M.P. Federle, R.L. Baron, H. Haradome, Y. Kawamori, S. Nawano, T. Araki, Islet Cell Tumor of the Pancreas: Biphasic CT versus MR Imaging in Tumor Detection, Radiology. 216 (2000) 163–171. https://doi.org/10.1148/radiology.216.1.r00jl26163.

[41] N.L. Kelekis, R.C. Semelka, MRI of pancreatic tumors, Eur Radiol. 7 (1997) 875– 886. https://doi.org/10.1007/s003300050221.

[42] M. Scialpi, L. Cagini, L. Pierotti, F. De Santis, T. Pusiol, I. Piscioli, M. Magli, A. D’Andrea, L. Brunese, A. Rotondo, Detection of small (≤ 2 cm) pancreatic adenocarcinoma and surrounding parenchyma: correlations between enhancement patterns at triphasic MDCT and histologic features, BMC Gastroenterol. 14 (2014) 16. https://doi.org/10.1186/1471-230X-14-16.

[43] K. Hanada, H. Amano, T. Abe, Early diagnosis of pancreatic cancer: Current trends and concerns, Ann Gastroenterol Surg. 1 (2017) 44–51. https://doi.org/10.1002/ags3.12004.

[44] K.M. Jang, S.H. Kim, Y.K. Kim, K.D. Song, S.J. Lee, D. Choi, Missed pancreatic ductal adenocarcinoma: Assessment of early imaging findings on prediagnostic magnetic resonance imaging, European Journal of Radiology. 84 (2015) 1473– 1479. https://doi.org/10.1016/j.ejrad.2015.05.012.

[45] M.J. Park, Y.K. Kim, S. Choi, H. Rhim, W.J. Lee, D. Choi, Preoperative Detection of Small Pancreatic Carcinoma: Value of Adding Diffusion-weighted Imaging to Conventional MR Imaging for Improving Confidence Level, Radiology. 273 (2014) 433–443. https://doi.org/10.1148/radiol.14132563.

[46] A.M. Herneth, S. Guccione, M. Bednarski, Apparent Diffusion Coefficient: a quantitative parameter for in vivo tumor characterization, European Journal of Radiology. 45 (2003) 208–213. https://doi.org/10.1016/S0720-048X(02)00310-8.

[47] S. Feuerlein, S. Pauls, M.S. Juchems, T. Stuber, M.H.K. Hoffmann, H.-J. Brambs, A.S. Ernst, Pitfalls in Abdominal Diffusion-Weighted Imaging: How Predictive is Restricted Water Diffusion for Malignancy, American Journal of Roentgenology. 193 (2009) 1070–1076. https://doi.org/10.2214/AJR.08.2093.

[48] S. Kyriazi, D.J. Collins, C. Messiou, K. Pennert, R.L. Davidson, S.L. Giles, S.B. Kaye, N.M. deSouza, Metastatic Ovarian and Primary Peritoneal Cancer: Assessing Chemotherapy Response with Diffusion-weighted MR Imaging—Value of Histogram Analysis of Apparent Diffusion Coefficients, Radiology. 261 (2011) 182–192. https://doi.org/10.1148/radiol.11110577.

[49] H.J. Kim, Y.K. Kim, W.K. Jeong, W.J. Lee, D. Choi, Pancreatic duct “Icicle sign” on MRI for distinguishing autoimmune pancreatitis from pancreatic ductal adenocarcinoma in the proximal pancreas, Eur Radiol. 25 (2015) 1551–1560. https://doi.org/10.1007/s00330-014-3548-4.

[50] B. Kim, S.S. Lee, Y.S. Sung, H. Cheong, J.H. Byun, H.J. Kim, J.H. Kim, Intravoxel incoherent motion diffusion-weighted imaging of the pancreas: Characterization of benign and malignant pancreatic pathologies: IVIM DWI of the Pancreas, J. Magn. Reson. Imaging. 45 (2017) 260–269. https://doi.org/10.1002/jmri.25334.

[51] K. Okazaki, S.T. Chari, L. Frulloni, M.M. Lerch, T. Kamisawa, S. Kawa, M.-H. Kim, P. Lévy, A. Masamune, G. Webster, T. Shimosegawa, International consensus for the treatment of autoimmune pancreatitis, Pancreatology. 17 (2017) 1–6. https://doi.org/10.1016/j.pan.2016.12.003.

参考文献をもっと見る