リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Proximity spin-orbit coupling in graphene and its multilayers on transition-metal dichalcogenides」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Proximity spin-orbit coupling in graphene and its multilayers on transition-metal dichalcogenides

LI Yang 東北大学

2020.09.25

概要

Recently, proximity-induced phenomena in van der Waals (vdW) heterostruc- tures [1] consisting of several 2D materials have attracted considerable exper- imental and theoretical interests. Since the physical properties of the 2D materials are generally sensitive to the substrate, we can select a specific kind of substrates to manipulate the properties of the 2D materials. A typ- ical example is graphene on a substrate of transition-metal dichalcogenides (TMDC) [2, 3, 4, 5], where negligibly small spin-orbit coupling (SOC) of in- trinsic graphene is significantly enhanced by the interlayer interaction with the TMDC substrate. Similarly a magnetic exchange field is induced on graphene when it is placed on a ferromagnet substrate [6, 7, 8].

Although great efforts have been devoted to the research of the proximity effects in the 2D materials, the previous studies have mainly considered com- mensurate structures, where the effect of lattice mis-orientation is neglected. In particular, the previous works on the proximity SOC in the graphene/T- MDC systems only focused on non-rotated configurations [3, 4, 5, 9, 10], where the lattice constant is adjusted to obtain a commensurate structures with a finite unit cell. Meanwhile, the effects of the lattice mis-orientation have been extensively studied in other 2D heterostructures [11, 12]. In graphene/hBN (hexagonal boron nitride) [13, 14, 15, 16, 17, 18, 19, 20, 21], the moir´e in- terference pattern gives rise to the formation of a miniband structure with the secondary Dirac cones [17]. The twisted bilayer graphene also exhibits dramatic angle-dependent phenomena, such as the flat band formation [22, 23, 24, 25, 26, 27, 28, 29] and the emergent superconductivity [30, 31].

For graphene/TMDC heterostructures, the band structure was theoret- ically calculated for several commensurate angles using the density func- tional theory (DFT). [32, 33, 34]. It was also experimentally probed by angle-resolved photoemission spectroscopy [35, 36], photoluminescence, Ra- man spectroscopy [37], and scanning tunneling spectroscopy[38]. However, the effect of lattice mis-orientation and the twist-angle dependence of prox- imity induced SOC on graphene still remain unclear. It is generally hard to consider an arbitrary twist angle in the DFT calculation, because the system is essentially incommensurate and does not have a finite unit cell.

In this thesis, we study the proximity SOC effect in incommensurate graphene-TMDC heterostructures by using a perturbational approach based on the tight-binding model, which do not need the commensurate lattice matching. We obtain an effective proximity-SOC potential for graphene as a continuous function of θ, and reveal its angle dependence for several types of TMDCs. We find that the relative rotation of graphene to TMDC greatly enhances the spin splitting of graphene, typically by a few to ten times com- pared to the non-rotated geometry, and the maximum splitting is achieved around 20◦. Furthermore, we demonstrate that the spin-splitting is sensitive to the relative band energy between graphene and TMDC, and it sharply rises when the graphene’s Dirac point is shifted toward TMDC band by applying the gate voltage. In the latter part, we study the proximity SOC effect in multilayer graphenes on TMDC. We apply the above theoretical analysis to AB-stacked bilayer graphene (BLG), ABA-stacked trilayer graphene (TLG) and ABC-stacked TLG. The multilayer graphene is distinct from the mono- layer in that the band structure is tunable by the perpendicular gate electric field [39, 40, 41, 42, 43, 44, 45]. We will demonstrate that the proximity induced SOC on multilayer graphenes can be controlled by the electric field. The theoretical method proposed here is applicable to any incommensurate bilayer systems where the DFT calculation cannot be used, and therefore it considerably extends the applicability of the theoretical framework to a wide variety of van der Waals heterostructures.

The thesis is organized as follows. In the rest of this chapter, we re- view the previous works on graphene, multilayer graphenes, TMDC and two dimensional moir´e superlattices . Chapter 2 presents the essential theoreti- cal tools to study graphene on TMDC heterostructures, where we introduce the electronic band models of monolayer graphene, multilayer graphenes and TMDC, and then present the theoretical treatment to describe the interlayer interaction between two layers with different periodicities. Using these theo- retical methods, we study the angular dependence of proximity induces SOC for graphene on TMDC in Chapter 3 and that for multilayer graphenes in Chapter 4. Chapter 5 concludes the thesis.

この論文で使われている画像

参考文献

[1] A. K. Geim and I. V. Grigorieva, “Van der Waals Heterostructures,” Nature, vol. 499, no. 7459, p. 419, 2013.

[2] A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. Rodin, E. O’Farrell, et al., “Spin– orbit Proximity Effect in Graphene,” Nature communications, vol. 5, p. 4875, 2014.

[3] T. Kaloni, L. Kou, T. Frauenheim, and U. Schwingenschl¨ogl, “Quantum Spin Hall States in Graphene Interacting with WS2 or WSe2,” Applied Physics Letters, vol. 105, no. 23, p. 233112, 2014.

[4] M. Gmitra and J. Fabian, “Graphene on Transition-metal Dichalco- genides: A Platform for Proximity Spin-orbit Physics and Optospin- tronics,” Physical Review B, vol. 92, no. 15, p. 155403, 2015.

[5] Z. Wang, D.-K. Ki, H. Chen, H. Berger, A. H. MacDonald, and A. F. Morpurgo, “Strong Interface-induced Spin–orbit Interaction in Graphene on WS2,” Nature communications, vol. 6, p. 8339, 2015.

[6] P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F. Katmis, Y. Zhu, D. Heiman, J. Hone, et al., “Strong Interfacial Exchange Field in the Graphene/eus Heterostructure,” Nature materials, vol. 15, no. 7, pp. 711–716, 2016.

[7] M. Gurram, S. Omar, and B. J. van Wees, “Bias Induced Up to 100% Spin-injection and Detection Polarizations in Ferromagnet/bilayer- hBN/graphene/hBN Heterostructures,” Nature communications, vol. 8, no. 1, pp. 1–7, 2017.

[8] S. Singh, J. Katoch, T. Zhu, K.-Y. Meng, T. Liu, J. T. Brangham, F. Yang, M. E. Flatt´e, and R. K. Kawakami, “Strong Modulation of Spin Currents in Bilayer Graphene By Static and Fluctuating Proximity Exchange Fields,” Physical review letters, vol. 118, no. 18, p. 187201, 2017.

[9] T. P. Cysne, A. Ferreira, and T. G. Rappoport, “Crystal-field Effects in Graphene with Interface-induced Spin-orbit Coupling,” Physical Review B, vol. 98, no. 4, p. 045407, 2018.

[10] A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, “Giant Spin Lifetime Anisotropy in Graphene Induced By Proximity Effects,” Phys- ical review letters, vol. 119, no. 20, p. 206601, 2017.

[11] S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, and E. Kaxi- ras, “Twistronics: Manipulating the Electronic Properties of Two- dimensional Layered Structures Through Their Twist Angle,” Phys. Rev. B, vol. 95, no. 7, p. 075420, 2017.

[12] R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, “Twistable electronics with dynamically rotatable het- erostructures,” Science, vol. 361, no. 6403, pp. 690–693, 2018.

[13] M. Kindermann, B. Uchoa, and D. L. Miller, “Zero-energy Modes and Gate-tunable Gap in Graphene on Hexagonal Boron Nitride,” Physical Review B, vol. 86, no. 11, p. 115415, 2012.

[14] J. Wallbank, A. Patel, M. Mucha-Kruczyn´ski, A. Geim, and V. Fal’ko, “Generic Miniband Structure of Graphene on a Hexagonal Substrate,” Physical Review B, vol. 87, no. 24, p. 245408, 2013.

[15] M. Mucha-Kruczyn´ski, J. Wallbank, and V. Fal’Ko, “Heterostructures of Bilayer Graphene and h-BN: Interplay Between Misalignment, Inter- layer Asymmetry, and Trigonal Warping,” Physical Review B, vol. 88, no. 20, p. 205418, 2013.

[16] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, “Ab Initio Theory of Moir´e Superlattice Bands in Layered Two-dimensional Materials,” Physical Review B, vol. 89, no. 20, p. 205414, 2014.

[17] P. Moon and M. Koshino, “Electronic Properties of Graphene/hexagonal-boron-nitride Moir´e Superlattice,” Physical Review B, vol. 90, no. 15, p. 155406, 2014.

[18] C. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Ka- toch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. Shepard, J. Hone, and P. Kim, “Hofstadter/’s Butterfly and the Fractal Quantum Hall Effect in Moire Superlattices,” Nature, vol. 497, no. 7451, pp. 598–602, 2013.

[19] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wall- bank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim, “Cloning of Dirac Fermions in Graphene Superlattices,” Nature, vol. 497, no. 7451, pp. 594–597, 2013.

[20] B. Hunt, J. Sanchez-Yamagishi, A. Young, M. Yankowitz, B. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. Ashoori, “Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure,” Science, vol. 340, no. 6139, pp. 1427– 1430, 2013.

[21] G. L. Yu, R. V. Gorbachev, J. S. Tu, A. V. Kretinin, Y. Cao, R. Jalil, F. Withers, L. A. Ponomarenko, B. A. Piot, M. Potemski, D. C. Elias, X. Chen, K. Watanabe, T. Taniguchi, I. V. Grigorieva, K. S. Novoselov, V. I. Fal’ko, A. K. Geim, and A. Mishchenko, “Hierarchy of Hofstadter States and Replica Quantum Hall Ferromagnetism in Graphene Super- lattices,” Nature physics, vol. 10, pp. 525–529, 2014.

[22] J. Lopes dos Santos, N. Peres, and A. Castro Neto, “Graphene bilayer with a twist: Electronic structure,” Phys. Rev. Lett., vol. 99, no. 25, p. 256802, 2007.

[23] E. J. Mele, “Commensuration and Interlayer Coherence in Twisted Bi- layer Graphene,” Physical Review B, vol. 81, no. 16, p. 161405, 2010.

[24] G. Trambly de Laissardiere, D. Mayou, and L. Magaud, “Localization of Dirac Electrons in Rotated Graphene Bilayers,” Nano letters, vol. 10, no. 3, pp. 804–808, 2010.

[25] S. Shallcross, S. Sharma, E. Kandelaki, and O. Pankratov, “Electronic Structure of Turbostratic Graphene,” Physical Review B, vol. 81, no. 16, p. 165105, 2010.

[26] E. S. Morell, J. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, “Flat Bands in Slightly Twisted Bilayer Graphene: Tight-binding Calcula- tions,” Physical Review B, vol. 82, no. 12, p. 121407, 2010.

[27] R. Bistritzer and A. H. MacDonald, “Moir´e Bands in Twisted Double- layer Graphene,” Proceedings of the National Academy of Sciences, vol. 108, no. 30, pp. 12233–12237, 2011.

[28] P. Moon and M. Koshino, “Energy Spectrum and Quantum Hall Ef- fect in Twisted Bilayer Graphene,” Physical Review B, vol. 85, no. 19, p. 195458, 2012.

[29] G. T. de Laissardiere, D. Mayou, and L. Magaud, “Numerical Studies of Confined States in Rotated Bilayers of Graphene,” Phys. Rev. B, vol. 86, no. 12, p. 125413, 2012.

[30] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, “Unconventional Superconductivity in Magic- angle Graphene Superlattices,” Nature, vol. 556, no. 7699, p. 43, 2018.

[31] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature, vol. 556, p. 80, 2018.

[32] Z. Wang, Q. Chen, and J. Wang, “Electronic Structure of Twisted Bilayers of Graphene/MoS2 and MoS2/MoS2,” The Journal of Physical Chemistry C, vol. 119, no. 9, pp. 4752–4758, 2015.

[33] D. Di Felice, E. Abad, C. Gonz´alez, A. Smogunov, and Y. Dappe, “Angle Dependence of the Local Electronic Properties of the Graphene/MoS2 Interface Determined By Ab Initio Calculations,” Journal of Physics D: Applied Physics, vol. 50, no. 17, p. 17LT02, 2017.

[34] S. Hou, L. Han, L. Wu, R. Quhe, and P. Lu, “Robust Quasi- ohmic Contact Against Angle Rotation in Noble Transition-metal- dichalcogenide/graphene Heterobilayers,” RSC Advances, vol. 7, no. 73, pp. 45896–45901, 2017.

[35] W. Jin, P.-C. Yeh, N. Zaki, D. Chenet, G. Arefe, Y. Hao, A. Sala, T. O. Mentes, J. I. Dadap, A. Locatelli, et al., “Tuning the Electronic Struc- ture of Monolayer Graphene/MoS2 van der Waals Heterostructures via Interlayer Twist,” Phys. Rev.B, vol. 92, no. 20, p. 201409, 2015.

[36] D. Pierucci, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. C. Johnson, et al., “Band Alignment and Minigaps in Monolayer MoS2-graphene van der Waals Heterostructures,” Nano letters, vol. 16, no. 7, pp. 4054–4061, 2016.

[37] L. Du and H. Yu, “L. Du, H. Yu, M. Liao, S. Wang, L. Xie, X. Lu, J. Zhu, N. Li, C. Shen, P. Chen, R. Yang, D. Shi, and G. Zhang, Modulat- ing PL and Electronic Structures of MoS2/Graphene Heterostructures via Interlayer Twisting Angle, Appl. Phys. Lett. 111, 263106 (2017).,” Appl. Phys. Lett., vol. 111, p. 263106, 2017.

[38] C.-I. Lu, C. J. Butler, J.-K. Huang, Y.-H. Chu, H.-H. Yang, C.-M. Wei, L.-J. Li, and M.-T. Lin, “Moir´e-related In-gap States in a Twisted MoS2/graphite Heterojunction,” npj 2D Materials and Applications, vol. 1, no. 1, p. 24, 2017.

[39] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Control- ling the Electronic Structure of Bilayer Graphene,” Science, vol. 313, no. 5789, pp. 951–954, 2006.

[40] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. Vandersypen, “Gate-induced Insulating State in Bilayer Graphene De- vices,” Nature materials, vol. 7, no. 2, pp. 151–157, 2008.

[41] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009.

[42] E. McCann and V. I. Fal’ko, “Landau-level degeneracy and quantum hall effect in a graphite bilayer,” Physical review letters, vol. 96, no. 8, p. 086805, 2006.

[43] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Ob- servation of an Electrically Tunable Band Gap in Trilayer Graphene,” Nature Physics, vol. 7, no. 12, pp. 944–947, 2011.

[44] W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. Cronin, D. Smirnov, et al., “Stacking-dependent Band Gap and Quantum Transport in Trilayer Graphene,” Nature Physics, vol. 7, no. 12, pp. 948–952, 2011.

[45] M. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. Morpurgo, and S. Tarucha, “Trilayer Graphene is a Semimetal with a Gate-tunable Band Overlap,” Nature nanotechnology, vol. 4, no. 6, pp. 383–388, 2009.

[46] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” science, vol. 306, no. 5696, pp. 666– 669, 2004.

[47] K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Mo- rozov, and A. K. Geim, “Two-dimensional Atomic Crystals,” Proceed- ings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451– 10453, 2005.

[48] D. DiVincenzo and E. Mele, “Self-consistent Effective-mass Theory for Intralayer Screening in Graphite Intercalation Compounds,” Physical Review B, vol. 29, no. 4, p. 1685, 1984.

[49] G. W. Semenoff, “Condensed-matter Simulation of a Three-dimensional Anomaly,” Physical Review Letters, vol. 53, no. 26, p. 2449, 1984.

[50] F. D. M. Haldane, “Model for a Quantum Hall Effect Without Lan- dau Levels: Condensed-matter Realization of The” Parity Anomaly”,” Physical review letters, vol. 61, no. 18, p. 2015, 1988.

[51] T. Ando, “Theory of Quantum Transport in a Two-dimensional Elec- tron System Under Magnetic Fields. IV. Oscillatory Conductivity,” Journal of the Physical Society of Japan, vol. 37, no. 5, pp. 1233–1237, 1974.

[52] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental Ob- servation of the Quantum Hall Effect and Berry’s Phase in Graphene,” nature, vol. 438, no. 7065, pp. 201–204, 2005.

[53] K. S. Novoselov and A. Geim, “The Rise of Graphene,” Nat. Mater, vol. 6, no. 3, pp. 183–191, 2007.

[54] H. Min, J. Hill, N. A. Sinitsyn, B. Sahu, L. Kleinman, and A. H. MacDonald, “Intrinsic and Rashba Spin-orbit Interactions in Graphene Sheets,” Physical Review B, vol. 74, no. 16, p. 165310, 2006.

[55] G. Li, A. Luican, and E. Y. Andrei, “Scanning Tunneling Spectroscopy of Graphene on Graphite,” Physical Review Letters, vol. 102, no. 17, p. 176804, 2009.

[56] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, “Quantum Anomalous Hall Effect in Graphene From Rashba and Exchange Effects,” Physical Review B, vol. 82, no. 16, p. 161414, 2010.

[57] H. S. Lipson and A. Stokes, “The Structure of Graphite,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 181, no. 984, pp. 101–105, 1942.

[58] M. Koshino and T. Ando, “Transport in Bilayer Graphene: Calcula- tions Within a Self-consistent Born Approximation,” Physical Review B, vol. 73, no. 24, p. 245403, 2006.

[59] F. Guinea, A. C. Neto, and N. Peres, “Electronic States and Lan- dau Levels in Graphene Stacks,” Physical Review B, vol. 73, no. 24, p. 245426, 2006.

[60] C. Lu, C.-P. Chang, Y.-C. Huang, J. Lu, C.-C. Hwang, and M.-F. Lin, “Low-energy Electronic Properties of the AB-stacked Few-layer Graphites,” Journal of Physics: Condensed Matter, vol. 18, no. 26, p. 5849, 2006.

[61] C. Lu, C.-P. Chang, Y.-C. Huang, R.-B. Chen, and M. Lin, “Influence of an Electric Field on the Optical Properties of Few-layer Graphene with AB Stacking,” Physical Review B, vol. 73, no. 14, p. 144427, 2006.

[62] J. Nilsson, A. C. Neto, N. Peres, and F. Guinea, “Electron-electron Interactions and the Phase Diagram of a Graphene Bilayer,” Physical Review B, vol. 73, no. 21, p. 214418, 2006.

[63] B. Partoens and F. Peeters, “From Graphene to Graphite: Electronic Structure Around the K Point,” Physical Review B, vol. 74, no. 7, p. 075404, 2006.

[64] B. Partoens and F. Peeters, “Normal and Dirac Fermions in Graphene Multilayers: Tight-binding Description of the Electronic Structure,” Physical Review B, vol. 75, no. 19, p. 193402, 2007.

[65] M. Koshino and T. Ando, “Orbital Diamagnetism in Multilayer Graphenes: Systematic Study with the Effective Mass Approximation,” Physical Review B, vol. 76, no. 8, p. 085425, 2007.

[66] E. V. Castro, K. Novoselov, S. Morozov, N. Peres, J. L. Dos San- tos, J. Nilsson, F. Guinea, A. Geim, and A. C. Neto, “Biased Bilayer Graphene: Semiconductor with a Gap Tunable By the Electric Field Effect,” Physical review letters, vol. 99, no. 21, p. 216802, 2007.

[67] F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, “Graphene Field-effect Transistors with High On/off Current Ratio and Large Transport Band Gap at Room Temperature,” Nano letters, vol. 10, no. 2, pp. 715–718, 2010.

[68] C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.-C. Cheng, and J.-Z. Chen, “Enhanced Thermoelectric Power in Dual-gated Bilayer Graphene,” Physical review letters, vol. 107, no. 18, p. 186602, 2011.

[69] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable Infrared Plasmonic Devices Us- ing Graphene/insulator Stacks,” Nature nanotechnology, vol. 7, no. 5, pp. 330–334, 2012.

[70] J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H.-w. M. Milchberg, M. S. Fuhrer, and H. Drew, “Dual-gated Bilayer Graphene Hot-electron Bolometer,” Nature nanotechnology, vol. 7, no. 7, p. 472, 2012.

[71] K. Sugawara, K. Kanetani, T. Sato, and T. Takahashi, “Fabrication of Li-intercalated Bilayer Graphene,” AIP Advances, vol. 1, no. 2, p. 022103, 2011.

[72] L. Gong, R. J. Young, I. A. Kinloch, I. Riaz, R. Jalil, and K. S. Novoselov, “Optimizing the Reinforcement of Polymer-based Nanocom- posites By Graphene,” ACS nano, vol. 6, no. 3, pp. 2086–2095, 2012.

[73] R. Frindt and A. Yoffe, “Physical Properties of Layer Structures: Op- tical Properties and Photoconductivity of Thin Crystals of Molybde- num Disulphide,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 273, no. 1352, pp. 69–83, 1963.

[74] P. Joensen, R. Frindt, and S. R. Morrison, “Single-layer Mos2,” Mate- rials research bulletin, vol. 21, no. 4, pp. 457–461, 1986.

[75] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2,” Nano letters, vol. 10, no. 4, pp. 1271–1275, 2010.

[76] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: a New Direct-gap Semiconductor,” Physical review letters, vol. 105, no. 13, p. 136805, 2010.

[77] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley Polarization in MoS2 Monolayers By Optical Pumping,” Nature nanotechnology, vol. 7, no. 8, pp. 490–493, 2012.

[78] Z. Zhu, Y. Cheng, and U. Schwingenschl¨ogl, “Giant Spin-orbit-induced Spin Splitting in Two-dimensional Transition-metal Dichalcogenide Semiconductors,” Physical Review B, vol. 84, no. 15, p. 153402, 2011.

[79] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalco- genides,” Physical review letters, vol. 108, no. 19, p. 196802, 2012.

[80] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, et al., “Vertical and In-plane Heterostruc- tures From WS2/MoS2 Monolayers,” Nature materials, vol. 13, no. 12, pp. 1135–1142, 2014.

[81] K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, “2D Mate- rials and van der Waals Heterostructures,” Science, vol. 353, no. 6298, p. aac9439, 2016.

[82] L. Ponomarenko, A. Geim, A. Zhukov, R. Jalil, S. Morozov, K. Novoselov, I. Grigorieva, E. Hill, V. Cheianov, V. Fal’Ko, et al., “Tunable Metal–insulator Transition in Double-layer Graphene Het- erostructures,” Nature Physics, vol. 7, no. 12, pp. 958–961, 2011.

[83] L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, S. Morozov, et al., “Field-effect Tunneling Transistor Based on Vertical Graphene Heterostructures,” Science, vol. 335, no. 6071, pp. 947–950, 2012.

[84] S. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. Elias, K. Novoselov, L. Ponomarenko, A. Geim, and R. Gorbachev, “Cross- sectional Imaging of Individual Layers and Buried Interfaces of Graphene-based Heterostructures and Superlattices,” Nature materi- als, vol. 11, no. 9, pp. 764–767, 2012.

[85] C. Dean, A. Young, L. Wang, I. Meric, G.-H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, and J. Hone, “Graphene Based Het- erostructures,” Solid State Communications, vol. 152, no. 15, pp. 1275– 1282, 2012.

[86] R. Gorbachev, A. Geim, M. Katsnelson, K. Novoselov, T. Tu- dorovskiy, I. Grigorieva, A. H. MacDonald, S. Morozov, K. Watanabe, T. Taniguchi, et al., “Strong Coulomb Drag and Broken Symmetry in Double-layer Graphene,” Nature Physics, vol. 8, no. 12, pp. 896–901, 2012.

[87] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, et al., “Vertical Field-effect Transistor Based on Graphene–WS2 Heterostruc- tures for Flexible and Transparent Electronics,” Nature nanotechnology, vol. 8, no. 2, pp. 100–103, 2013.

[88] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, et al., “Van der Waals Engineering of Ferromagnetic Semiconductor Heterostruc- tures for Spin and Valleytronics,” Science Advances, vol. 3, no. 5, p. e1603113, 2017.

[89] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill, “Strong Room- temperature Ferromagnetism in VSe2 Monolayers on van der Waals Substrates,” Nature nanotechnology, vol. 13, no. 4, pp. 289–293, 2018.

[90] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, et al., “Layer-dependent Ferromagnetism in a van der Waals Crystal Down to the Monolayer Limit,” Nature, vol. 546, no. 7657, pp. 270–273, 2017.

[91] J. Qin, V. P. Pasko, M. G. McHarg, and H. C. Stenbaek-Nielsen, “Plasma Irregularities in the D-region Ionosphere in Association with Sprite Streamer Initiation,” Nature communications, vol. 5, no. 1, pp. 1– 6, 2014.

[92] M. Gmitra and J. Fabian, “Proximity Effects in Bilayer Graphene on Monolayer WSe2: Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor,” Physical review letters, vol. 119, no. 14, p. 146401, 2017.

[93] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, “Graphene Spin- tronics,” Nature nanotechnology, vol. 9, no. 10, p. 794, 2014.

[94] P. Moon and M. Koshino, “Optical Properties of the Hofstadter But- terfly in the Moir´e Superlattice,” Physical Review B, vol. 88, no. 24, p. 241412, 2013.

[95] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al., “Electronic Confinement and Coher- ence in Patterned Epitaxial Graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.

[96] J. Hass, R. Feng, J. Mill´an-Otoya, X. Li, M. Sprinkle, P. N. First, W. De Heer, E. Conrad, and C. Berger, “Structural Properties of the Multilayer Graphene/4h−SiC(000¯1) System As Determined By Surface X-ray Diffraction,” Physical Review B, vol. 75, no. 21, p. 214109, 2007.

[97] J. Hass, F. Varchon, J.-E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, “Why Multilayer Graphene on 4H −SiC(0001) Behaves Like a Single Sheet of Graphene,” Physical Review Letters, vol. 100, no. 12, p. 125504, 2008.

[98] G. Li, A. Luican, J. L. Dos Santos, A. C. Neto, A. Reina, J. Kong, and E. Andrei, “Observation of Van Hove Singularities in Twisted Graphene Layers,” Nature Physics, vol. 6, no. 2, pp. 109–113, 2010.

[99] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, “Structural Analysis of Multilayer Graphene via Atomic Moir´e Interferometry,” Physical Review B, vol. 81, no. 12, p. 125427, 2010.

[100] A. Luican, G. Li, A. Reina, J. Kong, R. Nair, K. S. Novoselov, A. K. Geim, and E. Andrei, “Single-layer Behavior and Its Breakdown in Twisted Graphene Layers,” Physical review letters, vol. 106, no. 12, p. 126802, 2011.

[101] W. A. De Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. First, R. Haddon, B. Piot, et al., “Epitaxial Graphene Electronic Structure and Transport,” Journal of Physics D: Applied Physics, vol. 43, no. 37, p. 374007, 2010.

[102] P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, “Raman Spectra of Misoriented Bilayer Graphene,” Physical Review B, vol. 78, no. 11, p. 113407, 2008.

[103] Z. Ni, Y. Wang, T. Yu, Y. You, and Z. Shen, “Reduction of Fermi Veloc- ity in Folded Graphene Observed By Resonance Raman Spectroscopy,” Physical Review B, vol. 77, no. 23, p. 235403, 2008.

[104] V. Carozo, C. Almeida, B. Fragneaud, P. Bedˆe, M. Moutinho, J. Ribeiro-Soares, N. Andrade, A. Souza Filho, M. Matos, B. Wang, et al., “Resonance Effects on the Raman Spectra of Graphene Super- lattices,” Physical Review B, vol. 88, no. 8, p. 085401, 2013.

[105] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron Ni- tride Substrates for High-quality Graphene Electronics,” Nature nan- otechnology, vol. 5, no. 10, pp. 722–726, 2010.

[106] Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, et al., “Direct Synthesis of van der Waals Solids,” Acs Nano, vol. 8, no. 4, pp. 3715–3723, 2014.

[107] M.-Y. Lin, C.-E. Chang, C.-H. Wang, C.-F. Su, C. Chen, S.-C. Lee, and S.-Y. Lin, “Toward Epitaxially Grown Two-dimensional Crystal Hetero- structures: Single and Double MoS2/graphene Hetero-structures By Chemical Vapor Depositions,” Applied Physics Letters, vol. 105, no. 7, p. 073501, 2014.

[108] K. Zhang, S. Feng, J. Wang, A. Azcatl, N. Lu, R. Addou, N. Wang, C. Zhou, J. Lerach, V. Bojan, et al., “Manganese Doping of Monolayer MoS2: the Substrate is Critical,” Nano letters, vol. 15, no. 10, pp. 6586– 6591, 2015.

[109] J. H. Garcia, A. W. Cummings, and S. Roche, “Spin Hall Effect and Weak Antilocalization in Graphene/transition Metal Dichalcogenide Heterostructures,” Nano letters, vol. 17, no. 8, pp. 5078–5083, 2017.

[110] M. Offidani, M. Milletar`ı, R. Raimondi, and A. Ferreira, “Optimal Charge-to-spin Conversion in Graphene on Transition-metal Dichalco- genides,” Physical review letters, vol. 119, no. 19, p. 196801, 2017.

[111] L. A. Ben´ıtez, J. F. Sierra, W. S. Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, “Strongly Anisotropic Spin Relax- ation in Graphene–transition Metal Dichalcogenide Heterostructures at Room Temperature,” Nature Physics, vol. 14, no. 3, pp. 303–308, 2018.

[112] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive Photodetectors Based on Monolayer MoS2,” Nature nanotechnology, vol. 8, no. 7, pp. 497–501, 2013.

[113] L. A. Ben´ıtez, W. S. Torres, J. F. Sierra, M. Timmermans, J. H. Gar- cia, S. Roche, M. V. Costache, and S. O. Valenzuela, “Tunable Room- temperature Spin Galvanic and Spin Hall Effects in van der Waals Het- erostructures,” Nature Materials, pp. 1–6, 2020.

[114] K. Song, D. Soriano, A. W. Cummings, R. Robles, P. Ordej´on, and S. Roche, “Spin Proximity Effects in Graphene/Topological Insulator Heterostructures,” Nano letters, vol. 18, no. 3, pp. 2033–2039, 2018.

[115] J. Slonczewski and P. Weiss, “Band Structure of Graphite,” Physical review, vol. 109, no. 2, p. 272, 1958.

[116] J. McClure, “Band Structure of Graphite and De Haas-van Alphen Effect,” Physical Review, vol. 108, no. 3, p. 612, 1957.

[117] J. McClure, “Theory of Diamagnetism of Graphite,” Physical review, vol. 119, no. 2, p. 606, 1960.

[118] M. S. Dresselhaus and G. Dresselhaus, “Intercalation Compounds of Graphite,” Advances in physics, vol. 51, no. 1, pp. 1–186, 2002.

[119] E. McCann and M. Koshino, “The Electronic Properties of Bilayer Graphene,” Rep. Prog. Phys., vol. 76, no. 5, p. 056503, 2013.

[120] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, “Band Structure of A B C-stacked Graphene Trilayers,” Physical Review B, vol. 82, no. 3, p. 035409, 2010.

[121] M. Koshino and E. McCann, “Landau Level Spectra and the Quantum Hall Effect of Multilayer Graphene,” Physical Review B, vol. 83, no. 16, p. 165443, 2011.

[122] J. Nilsson, A. C. Neto, F. Guinea, and N. Peres, “Electronic Properties of Bilayer and Multilayer Graphene,” Physical Review B, vol. 78, no. 4, p. 045405, 2008.

[123] L. Zhang, Z. Li, D. N. Basov, M. Fogler, Z. Hao, and M. C. Martin, “Determination of the Electronic Structure of Bilayer Graphene From Infrared Spectroscopy,” Physical Review B, vol. 78, no. 23, p. 235408, 2008.

[124] Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Band Structure Asymmetry of Bilayer Graphene Revealed By Infrared Spectroscopy,” Physical Review Letters, vol. 102, no. 3, p. 037403, 2009.

[125] A. Kuzmenko, I. Crassee, D. Van Der Marel, P. Blake, and K. Novoselov, “Determination of the Gate-tunable Band Gap and Tight-binding Parameters in Bilayer Graphene Using Infrared Spec- troscopy,” Physical Review B, vol. 80, no. 16, p. 165406, 2009.

[126] T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, “Quantum Hall Effect and Landau-level Crossing of Dirac Fermions in Trilayer Graphene,” Nature Physics, vol. 7, no. 8, p. 621, 2011.

[127] A. Avetisyan, B. Partoens, and F. Peeters, “Stacking Order Depen- dent Electric Field Tuning of the Band Gap in Graphene Multilayers,” Physical Review B, vol. 81, no. 11, p. 115432, 2010.

[128] K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, and J. Lu, “Electric-field-induced Energy Gap in Few-layer Graphene,” The Journal of Physical Chemistry C, vol. 115, no. 19, pp. 9458–9464, 2011.

[129] S. Fang, R. K. Defo, S. N. Shirodkar, S. Lieu, G. A. Tritsaris, and E. Kaxiras, “Ab-initio Tight-binding Hamiltonian for Transition Metal Dichalcogenides,” Physical Review B, vol. 92, no. 20, p. 205108, 2015.

[130] J. L. dos Santos, N. Peres, and A. C. Neto, “Continuum Model of the Twisted Graphene Bilayer,” Physical Review B, vol. 86, no. 15, p. 155449, 2012.

[131] M. Kindermann and P. First, “Local Sublattice-symmetry Breaking in Rotationally Faulted Multilayer Graphene,” Physical Review B, vol. 83, no. 4, p. 045425, 2011.

[132] L. Xian, S. Barraza-Lopez, and M. Chou, “Effects of Electrostatic Fields and Charge Doping on the Linear Bands in Twisted Graphene Bilayers,” Physical Review B, vol. 84, no. 7, p. 075425, 2011.

[133] P. Moon and M. Koshino, “Optical Absorption in Twisted Bilayer Graphene,” Physical Review B, vol. 87, no. 20, p. 205404, 2013.

[134] R. Bistritzer and A. H. MacDonald, “Moir´e Butterflies in Twisted Bi- layer Graphene,” Physical Review B, vol. 84, no. 3, p. 035440, 2011.

[135] M. Koshino, “Interlayer Interaction in General Incommensurate Atomic Layers,” New Journal of Physics, vol. 17, no. 1, p. 015014, 2015.

[136] J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Peri- odic Potential Problem,” Physical Review, vol. 94, no. 6, p. 1498, 1954.

[137] T. Nakanishi and T. Ando, “Conductance of Crossed Carbon Nan- otubes,” Journal of the Physical Society of Japan, vol. 70, no. 6, pp. 1647–1658, 2001.

[138] S. Uryu, “Electronic States and Quantum Transport in Double-wall Carbon Nanotubes,” Physical Review B, vol. 69, no. 7, p. 075402, 2004.

[139] W. A. Harrison, Elementary Electronic Structure: Revised. World Sci- entific Publishing Company, 2004.

[140] J. Huheey and T. Cottrell, “The Strengths of Chemical Bonds,” 1958.

[141] W. S. Jenks, W. Lee, and D. Shutters, “Photochemistry and Photo- physics of Aromatic Sulfoxides. 1 Characterization of the Triplets at Cryogenic Temperatures,” The Journal of Physical Chemistry, vol. 98, no. 9, pp. 2282–2289, 1994.

[142] T. C. Mak, “Crystal Structure of Molybdenum Hexacarbonyl,” Zeitschrift fu¨r Kristallographie-Crystalline Materials, vol. 166, no. 1- 4, pp. 277–282, 1984.

[143] E. Rudy, E. Rudy, and F. Benesovsky, “Untersuchungen in System Tantal-Wolfram-Kohlenstoff,” Monatshefte fu¨r Chemie und verwandte Teile anderer Wissenschaften, vol. 93, no. 5, pp. 1176–1195, 1962.

[144] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., “QUAN- TUM ESPRESSO: a Modular and Open-source Software Project for Quantum Simulations of Materials,” Journal of physics: Condensed matter, vol. 21, no. 39, p. 395502, 2009.

[145] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., “Advanced Capabilities for Materials Modelling with Quantum ESPRESSO,” Journal of Physics: Condensed Matter, vol. 29, no. 46, p. 465901, 2017.

[146] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Ap- proximation Made Simple,” Physical review letters, vol. 77, no. 18, p. 3865, 1996.

[147] Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, and B. Huang, “First-principles Study of the Graphene@ MoSe2 Heterobilayers,” The Journal of Phys- ical Chemistry C, vol. 115, no. 41, pp. 20237–20241, 2011.

[148] S. Agnoli, A. Ambrosetti, T. O. Mentes, A. Sala, A. Locatelli, P. L. Sil- vestrelli, M. Cattelan, S. Eichfeld, D. D. Deng, J. A. Robinson, et al., “Unraveling the Structural and Electronic Properties at the WSe2– Graphene Interface for a Rational Design of van der Waals Heterostruc- tures,” ACS Applied Nano Materials, vol. 1, no. 3, pp. 1131–1140, 2018.

[149] T. Ando, “The Electronic Properties of Graphene and Carbon Nan- otubes,” NPG asia materials, vol. 1, no. 1, p. 17, 2009.

[150] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett., vol. 95, no. 22, p. 226801, 2005.

[151] E. McCann, “Asymmetry Gap in the Electronic Band Structure of Bi- layer Graphene,” Phys. Rev. B, vol. 74, no. 16, p. 161403, 2006.

[152] T. Ando, “Theory of Electronic States and Transport in Carbon Nan- otubes,” J. Phys. Soc. Jpn., vol. 74, no. 3, pp. 777–817, 2005.

[153] F. Guinea, “Spin–orbit Coupling in a Graphene Bilayer and in Graphite,” New Journal of Physics, vol. 12, no. 8, p. 083063, 2010.

参考文献をもっと見る