リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「環状流を伴うトーラス構造を有するSPAR-type FOWTの浮体運動特性に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

環状流を伴うトーラス構造を有するSPAR-type FOWTの浮体運動特性に関する研究

劉 暁磊 横浜国立大学 DOI:info:doi/10.18880/00014820

2022.11.24

概要

Under the background of global warming, carbon dioxide peaking and carbon neutrality have become one of the goals that people are striving to achieve. Ocean wind energy has always been one of the renewable energy sources that people value and use from ancient sailing ships to modern ocean wind power generation. However, because of the high center of gravity of floating offshore wind turbines (FOWTs), the hydrodynamic response in the roll and pitch DOFs are relatively large under severe sea conditions. Therefore, if the vast space of the far-reaching sea wind energy is used on a large scale, the problem, of restraining the shaking movement of FOWT, that has always plagued us should be researched and resolved seriously.

 Until now, all of FOWTs are moored at sea. In this paper, a novel FOWT without a mooring system is designed, its vacillating motion in severe sea conditions is controlled by a spinning top device that is designed as a neutrally buoyant double-layer torus structure with an annular flow water in the internal small radius torus structure, and is welded to the periphery of the central cylinder of FOWT underwater buoyancy providing part. The torus structure is very common in daily life, such as swimming rings, doughnut desserts, bicycle tires, etc. The torus structure is also often used in scientific research, such as the acceleration track of a particle accelerator in particle physics. The neutral buoyancy can keep the constant draft of FOWT for comparative studies, meanwhile, make that steel rod connecting pieces between the periphery of the central cylinder of FOWT and the external large radius torus structure under vertical force as little as possible, delaying its fatigue. Moreover, the neutral buoyancy will also facilitate installation and removal.

 It is envisaged but verified with an experiment in this paper that the principle of the rotating annular flow water in the internal small radius torus structure is the same as the rotation of a rigid body - the spinning top. The fact that the moon revolves around the earth without resistance every lunar month plays a vital role in the stability of the earth's rotation axis. In addition to being used as a stabilizer, the spinning top is also widely used in many fields of engineering. For example, it is used to develop gyrocompass for navigation 100 years ago; the 3-axis gyroscope as the micro-electro-mechanical system is put into Iphone4 published in 2010; furthermore, NASA envisages using it to create gravity in space vehicles, but the rotation radius of the space vehicles is required to exceed 100m…… The gyroscopic effect from the precession of annular flow and the rotational axis retention effect from rotational inertia of annular flow can be obtained for actively restraining the shaking movement of FOWT. If these effects are linearized into the small amplitude problem, they can be treated as a damping force. This paper will study the possibility of contributing to the agitation of FOWT and improving its hydrodynamic response by effectively using these effects.

 The presence or absence of the torus structure, the different positions placed in the vertical direction, the radius of the torus structure, the radius of the internal annular flow and the angular velocity of the internal annular flow, the central cylinder radius and the central cylinder height, and the central cylinder wall thickness will be the design variables. Then a large number of comparative calculations based on the fluid-solid coupling theory of potential flow are carried out to determine the appropriate design parameters. Eventually, based on the obtained suitable design parameters, the proposed conceptual design approach is demonstrated to be feasible in view of engineering possibility.

この論文で使われている画像

参考文献

[1] BP, statistical review of world energy 2021. 2021.07

[2] 石田茂資. 再生可能エネルギー学術ワークショップ×SDGs, 佐賀大学海洋エネルギーセンター, 2021/10/04.

[3] https://gwec.net/global-wind-report-2021/

[4] https://www.ren21.net/

[5] https://gwec.net/global-offshore-wind-report-2020/

[6] Floating Offshore Wind Turbine Technology Guidebook, NEDO, 2019.03

[7] 鈴木英之. 横浜国立大学浮体式洋上風力発電に関する勉強会, 2021.6.17.

[8] KANRIN第88号(2020.01), 第96号(2021.05), 日本船舶海洋工学会誌.

[9] https://en.wikipedia.org/wiki/Wind_power

[10] 村井基彦. 横浜国立大学コンクリート製浮体式洋上風力発電システム(CFW)に関する勉強会, 2020.9.3.

[11] https://www.hexicon.eu/mfn_news/hexicon-to-develop-twinway-project-for-floating- wind-in-norway/

[12] https://www.rystadenergy.com/

[13] https://ec.europa.eu/info/index_en

[14] http://jwpa.jp/index_e.html

[15] https://en.wikipedia.org/wiki/INS_Vikrant_(2013)

[16] 任俊生. 船舶運動與控制. 大連海事大學航海技術研究所. 2012

[17] Shengwen Xu, Motohiko Murai, Xuefeng Wang, KensakuTakahashi. A novel conceptual design of a dynamically positioned floating wind turbine. Ocean Engineering, Volume 221, 1 February 2021

[18] 井上義行. 係留浮体の運動と係留力の推定法に関する研究. 昭和53年12月

[19] M. Murai, K. Ishikawa, R. Nishimura. A Study on an Experiment of Behavior of a SPAR Type Offshore Wind Turbine Con-sidering Rotation of Wind Turbine Blades, Oceans2010, 2010.05.

[20] Faisal Mahmuddin. Rotor Blade Performance Analysis with Blade Element Momentum Theory. Energy Procedia, Volume 105, May 2017.

[21] 劉應中, 繆國平. 船舶在波浪上的运动理论. 上海交通大學出版社. 1986.

[22] 朱仁傳, 繆囯平. 船舶在波浪上的運動理論. 上海交通大學出版社. 2019.

[23] 王洪偉. 我所理解的流體力學. 國防工業出版社, 2014.

[24] Haskind, M. The hydrodynamic theory of ship oscillations in rolling and pitching. Prikl. Mat. Mekh. 1946, 10, 33–66.

[25] Haskind, M. The oscillation of a ship in still water. Izv. Akad. Nauk SSSR Otd. Tekh. Nauk 1946, 1, 23–34.

[26] F. Ursell. On The Heaving Motion of a Circular Cylinder on the Surface of a Fluid. The University, Manchester, 1949.

[27] M. D. Haskind, On wave motions of a heavy fluid, Prikl. Mat. Mekh. 18 (1954) 15–26.

[28] T. H. Havelock. The Damping of the Heaving and Pitching Motion of a Ship. 1942.

[29] Fritz John. On the motion of floating bodies. I. 1949.

[30] Fritz John. On the motion of floating bodies. II. Simple harmonic motions. 1950.

[31] John L. Hess; A. M. O. Smith. Calculation of nonlifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 8 (04): 22–44.1964-09-01.

[32] A. B. Finkelstein. The initial value problem for transient water waves. Communications of Pure and Applied Mathematics, 10:511-522. 1957.

[33] Cummins, W.E. The impulse response function and ship motions. Schiffstechnik, 47, 101-109. 1962.

[34] Gerard van Oortmerssen. Thesis of the motions of a moored ship in waves, 1976

[35] Korvin-Kroukovsky, B.V. Investigation of ship motions in regular waves. 1955.

[36] Korvin-Kroukovsky, B.V; Winnifred R Jacobs. Pitching and heaving motions of a ship in regular waves. 1957.

[37] 田才 福造, 高木 又男, 規則波中の応答理論及び計算法 [J]. 耐波性に関するシンポジウム (第一回), 日本造船学会, 1969.

[38] Ogilvie, T. Francis; Tuck, Ernest O. A rational strip theory of ship motions: Part I. University of Michigan, 1969-03-01.

[39] Ogilvie, T. Francis; Tuck, Ernest O. A rational strip theory of ship motions: Part II. University of Michigan, 1971-01-01.

[40] Salvesen, Nils; Tuck, E O; Faltinsen, O. Ship Motions and Sea Loads [J]. 1970.

[41] Frank, Werner. Oscillation of cylinders in or below the free surface of deep fluids. 1967.10.

[42] Newman John Nicholas. The theory of ship motions. Advances in Applied Mechanics, Volume 18, 1978, pp. 221-283.

[43] St Dinis, W. Pierson. On the motions of ships in confused seas. 1953.

[44] Yakov Isidorovich Perelman. Physics for Entertainment: Volume 2.

[45] https://en.wikipedia.org/wiki/Viscosity

[46] George • Green. An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, 1828.

[47] C. Neumann. Ueber die Integration der partiellen Differentialgleichung: α2Φ/α2x + α2Φ/α2y=0. Article in Journal für die reine und angewandte Mathematik (Crelles Journal), published July 1861, pp. 335-366.

[48] 高木 又男, 新井 信一. 船舶•海洋構造物の耐波理論. 成山堂書店. 1996.

[49] 神部 勉, 偏微分方程式, Application Mathematics 3. 講談社, 1987.

[50] N. M. Newmark, “A Method of Computation for Structural Dynamics,” ASCE Journal of the Engineering Mechanics Division, Vol. 85, 1959, pp. 67-94.

[51] http://ocedu.zju.edu.cn/bkspy//attachments/2018-12/01-1545977908-484635.pdf

[52] 元良誠三.浮体と海洋構造物の運動学.成山堂書店.1997

[53] Claudio Rodríguez. Lecture. Federal University of Rio de Janeiro(UFRJ), brazil

[54] Ying-Xin Zhou, Jia-Sheng Zu, and Jing Liu. Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine.

[55] M. Murai and A. Nagamine. Comparisons of Hydrodynamic Behavior of Vertical Axis and Horizontal Axis FOWT, Proc. of More, 2013.

[56] https://www.jodc.go.jp/jodcweb/

[57] https://en.wikipedia.org/wiki/Superfluidity

[58] Aurore Loisy, Jens Eggers, and Tanniemola B. Liverpool1. Active Suspensions have Nonmonotonic Flow Curves and Mul-tiple Mechanical Equilibria. Physical Review Letters 121, 018001 (2018). DOI: 10.1103/PhysRevLett.121.018001.

参考文献をもっと見る