リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Numerical Study of Surface Pressure Fluctuation on Rigid Disk-Gap-Band-Type Supersonic Parachutes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Numerical Study of Surface Pressure Fluctuation on Rigid Disk-Gap-Band-Type Supersonic Parachutes

Kitamura K 20402547 Fukumoto K Mori K 90375121 横浜国立大学

2020.11.11

概要

In the aerodynamic characteristics of supersonic parachutes, it is important to understand surface pressure distribution because it is strongly related to the fluctuation of drag and problematic unstable deformation of a parachute. However, there is a paucity of studies that focuses on the detailed surface pressure distribution. Therefore, we investigated the interior and exterior of a rigid disk-gap-band-type parachute as the first step, under the assumption that the forebody or suspension lines are absent, and thus the pressure and drag fluctuations are small. Two configurations are considered: one with a continuous gap and a vent orifice, representing a conventional Disk-Gap-Band parachute, and one with a discontinuous gap made up of 8 separate orifices and a vent orifice. By making the gap discontinuous, the interior and exterior pressure fluctuations are reduced. Furthermore, as indicated by the flowfield analysis, the discrete gap reduces the asymmetric pressure distribution interior the parachute, and the interior pressure fluctuation far from the center is suppressed. The result is considered useful for the suppression of unstable deformation such as area oscillation. This is currently a problem in supersonic parachute operation. In addition, we have identified locations on the model surface where the pressure fluctuations contribute to the drag fluctuations of the model.

この論文で使われている画像

参考文献

[1] Cruz, J. R., and Lingard, J. S., “Aerodynamic Decelerators for Planetary

Exploration: Past, Present, and Future,” AIAA Guidance, Navigation,

and Control Conference and Exhibit, AIAA Paper 2006-6792, 2006.

https://doi.org/10.2514/6.2006-6792

[2] Maydew, R. C., Peterson, C. W., and Orlik-Ruckemann, K. J., “Design and

Testing of High-Performance Parachutes,” AGARDograph 319, NeuillySur-Seine, France, 1991, p. 12, https://www.sto.nato.int/publications/

AGARD/AGARD-AG-319/AGARD-AG-319.pdf [retrieved 29 July 2020].

[3] Reichenau, D. E., “Aerodynamic Characteristics of Disk-Gap-Band

Parachutes in the Wake of Viking Entry Forebodies at Mach Numbers

from 0.2 to 2.6,” Arnold Engineering Development Center AEDC-TR72-78, Arnold AFB, TN, 1972, https://apps.dtic.mil/dtic/tr/fulltext/u2/

746291.pdf [retrieved 29 July 2020].

[4] Sengupta, A., Steltzner, A., Witkowski, A., Candler, G., and Pantano,

C., “Findings from the Supersonic Qualification Program of the Mars

Science Laboratory Parachute System,” AIAA Aerodynamic Decelerator Systems Conference, AIAA Paper 2009-2900, 2009.

https://doi.org/10.2514/6.2009-2900

[5] Semba, N., Kuzuo, K., Taguchi, M., and Mori, K., “Statistical Characteristics of the Pressure Oscillation in the Canopy of Supersonic Parachute,” Journal of the Society for Aeronautical and Space Sciences,

Vol. 65, No. 2, 2017, pp. 64–72 (in Japanese).

[6] Karagiozis, K., Kamakoti, R., Cirak, F., and Pantano, C., “A Computational Study of Supersonic Disk-Gap-Band Parachutes Using LargeEddy Simulation Coupled to a Structural Membrane,” Journal of Fluids

and Structures, Vol. 27, No. 2, 2011, pp. 175–192.

https://doi.org/10.1016/j.jfluidstructs.2010.11.007

[7] Sengupta, A., Roeder, J., Kelsch, R., Wernet, M., Kandis, M., and

Witkowski, A., “Supersonic Disk Gap Band Parachute Performance

in the Wake of a Viking-Type Aeroshell from Mach 2 to 2.5,” AIAA

Paper 2008-6217, 2008.

https://doi.org/10.2514/6.2008-6217

[8] Kim, Y., and Peskin, C. S., “3-D Parachute Simulation by the Immersed

Boundary Method,” Computers and Fluids, Vol. 38, No. 6, 2009,

pp. 1080–1090.

https://doi.org/10.1016/j.compfluid.2008.11.002

[9] Xue, X., and Nakamura, Y., “Numerical Simulation of a ThreeDimensional Flexible Parachute System Under Supersonic Conditions,”

Transactions of the Japan Society for Aeronautical and Space Sciences,

Aerospace Technology Japan, Vol. 11, Nov. 2013, pp. 99–108.

https://doi.org/10.2322/tastj.11.99

[10] Xue, X., Koyama, H., Nakamura, Y., and Wen, C.-Y., “Effects of

Suspension Line on Flow Field Around a Supersonic Parachute,” Aerospace Science and Technology, Vol. 43, June 2015, pp. 63–70.

https://doi.org/10.1016/j.ast.2015.02.014

[11] Xue, X.-P., Nishiyama, Y., Nakamura, Y., Mori, K., and Wen, C.-Y.,

“Parametric Study on Aerodynamic Interaction of Supersonic Parachute

System,” AIAA Journal, Vol. 53, No. 9, 2015, pp. 2796–2801.

https://doi.org/10.2514/1.J053824

[12] Guruswamy, G. P., “Time-Accurate Coupling of Three-Degree-ofFreedom Parachute System with Navier–Stokes Equations,” Journal

of Spacecraft and Rockets, Vol. 54, No. 6, 2017, pp. 1278–1283.

https://doi.org/10.2514/1.A33835

[13] Tezduyar, T. E., Takizawa, K., Moorman, C., Wright, S., and Christopher, J., “Space–Time Finite Element Computation of Complex Fluid–

Structure Interactions,” International Journal for Numerical Methods in

Fluids, Vol. 64, Nos. 10–12, 2010, pp. 1201–1218.

https://doi.org/10.1002/fld.2221

[14] Stein, K., Benney, R., Kalro, V., Tezduyar, T. E., Leonard, J., and Accorsi,

M., “Parachute Fluid-Structure Interactions: 3-D Computation,” Computer

Methods in Applied Mechanics and Engineering, Vol. 190, Nos. 3–4,

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

2000, pp. 383–386.

https://doi.org/10.1016/S0045-7825(00)00208-5

“Performance of and Design Criteria for Deployable Aerodynamic

Decelerators,” U.S. Air Force ASD-TR-61-579, Dec. 1963, https://

apps.dtic.mil/dtic/tr/fulltext/u2/429971.pdf [retrieved 29 July 2020].

Heinrich, H. G., Ballinger, J. G., and Ryan, P. E., “Pressure Distribution

in Transonic Flow of Ribbon and Guide Surface Parachute Models,”

U.S. Air Force WADC 59-32, Feb. 1959. https://apps.dtic.mil/dtic/tr/

fulltext/u2/210257.pdf [retrieved 29 July 2020].

Fric, T. F., and Roshko, A., “Vortical Structure in the Wake of a

Transverse Jet,” Journal of Fluid Mechanics, Vol. 279, Nov. 1994,

pp. 1–47.

https://doi.org/10.1017/S0022112094003800

Aswin, G., and Chakraborty, D., “Numerical Simulation of Transverse

Side Jet Interaction with Supersonic Free Stream,” Aerospace Science

and Technology, Vol. 14, No. 5, 2010, pp. 295–301.

https://doi.org/10.1016/j.ast.2010.02.001

Takayanagi, H., Suzuki, T., Yamada, K., Maru, Y., Matsuyama, S., and

Fujita, K., “Development of Supersonic Parachute for Japanese Mars

Rover Mission,” Transactions of the Japan Society for Aeronautical and

Space Sciences, Aerospace Technology Japan, Vol. 14, No. ists30,

2016, pp. Pe_87–Pe_94.

https://doi.org/10.2322/tastj.14.Pe_87

Spalart, P. R., Deck, S., Shuur, M. I., Squires, K. D., Strelets, M. K., and

Travin, A., “A New Version of Detached–Eddy Simulation, Resistant to

Ambiguous Grid Densities,” Theoretical and Computational Fluid

Dynamics, Vol. 20, No. 3, 2006, pp. 181–195.

https://doi.org/10.1007/s00162-006-0015-0

Pain, R., Weiss, P.-E., and Deck, S., “Zonal Detached Eddy Simulation

of the Flow Around a Simplified Launcher Afterbody,” AIAA Journal,

Vol. 52, No. 9, 2014, pp. 1967–1979.

https://doi.org/10.2514/1.J052743

Kuzuo, K., Taguchi, M., Kurata, R., Arihama, K., and Mori, K., “Shape

Effect on the Aerodynamics of Supersonic Parachute,” Transactions of

the Japan Society for Aeronautical and Space Sciences (in preparation).

Cruz, J. R., Way, D., Shidner, J., Davis, J. L., Powell, R. W., Kipp, D.,

Adams, D. S., Sengupta, A., Witowski, A., and Kandis, M., “Parachute

Models Used in the Mars Science Laboratory Entry, Descent, and

Landing Simulation,” AIAA Aerodynamic Decelerator Systems Technology Conference, AIAA Paper 2013-1276, 2013.

https://doi.org/10.2514/6.2013-1276

Hashimoto, A., Murakami, K., Aoyama, T., Hishida, M., Paulus, R. L.,

Sakashita, M., and Sato, Y., “Development of Fast Flow Solver FaSTAR,” Journal of the Society for Aeronautical and Space Sciences,

Vol. 63, No. 3, 2015, pp. 96–105 (in Japanese).

https://doi.org/10.2322/jjsass.63.96

Shima, E., and Kitamura, K., “Parameter-Free Simple Low-Dissipation

AUSM-Family Scheme for All Speeds,” AIAA Journal, Vol. 49, No. 8,

2011, pp. 1693–1709.

https://doi.org/10.2514/1.J050905

Shima, E., Kitamura, K., and Haga, T., “Green–Gauss/Weighted-LeastSquares Hybrid Gradient Reconstruction for Arbitrary Polyhedra

Unstructured Grids,” AIAA Journal, Vol. 51, No. 11, 2013, pp. 2740–

2747.

https://doi.org/10.2514/1.J052095

Venkatakrishnan, V., “Convergence to Steady State Solutions of the

Euler Equations on Unstructured Grids with Limiters,” Journal of

Computational Physics, Vol. 118, No. 1, 1995, pp. 120–130.

https://doi.org/10.1006/jcph.1995.1084

Jameson, A., and Turkel, E., “Implicit Schemes and LU Decompositions,” Mathematics of Computation, Vol. 37, No. 156, 1981, pp. 385–

397.

https://doi.org/10.1090/S0025-5718-1981-0628702-9

Hashimoto, A., Murakami, K., Aoyama, T., Yamamoto, K., Murayama,

M., and Lahur, P. R., “Drag Prediction on NASA CRM Using Automatic

Hexahedra Grid Generation Method,” Journal of Aircraft, Vol. 51,

No. 4, 2014, pp. 1172–1182.

https://doi.org/10.2514/1.C032641

Takayanagi, H., Yamada, K., Maru, Y., and Fujita, K., “Development of

Supersonic Parachute for Mars EDL Demonstrator,” Proceedings of the

58th Space Sciences and Technology Conference, Japan Soc. for Aeronautical and Space Sciences (JSASS) Paper JSASS-2014-4168, 2014

(in Japanese).

C. Pantano

Associate Editor

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る