リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stochastic Uncertainty in a Dam-Break Experiment with Varying Gate Speeds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stochastic Uncertainty in a Dam-Break Experiment with Varying Gate Speeds

Hiroshi Takagi Fumitaka Furukawa 東京工業大学 DOI:https://doi.org/10.3390/jmse9010067

2021.01.11

概要

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow ex- periments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. How- ever, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet in- creases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.

参考文献

1. Ikeno, M.; Tanaka, H. Experimental study on impulse force of drift body and tsunami running up to land. Ann. J. Coast. Eng. 2003, 50, 721–725.

2. Esteban, M.; Thao, N.D.; Takagi, H.; Shibayama, T. Analysis of rubble mound foundation failure of a caisson breakwater subjected to tsunami attack. Proc. Int. Offshore Polar Eng. Conf. 2008, 4, 528–534.

3. Foster, A.S.J.; Rossetto, T.; Allsop, W. An experimentally validated approach for evaluating tsunami inundation forces on rectangular buildings. Coast. Eng. 2017, 128, 44–57. [CrossRef]

4. Derschum, C.; Nistor, I.; Stolle, J.; Goseberg, N. Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coast. Eng. 2018, 141, 24–35. [CrossRef]

5. Wüthrich, D.; Pfister, M.; Nistor, I.; Schleiss, A.J. Experimental study on forces exerted on buildings with openings due to extreme hydrodynamic events. Coast. Eng. 2018, 140, 72–86. [CrossRef]

6. Mokhtar, Z.A.; Mohammed, T.A.; Yusuf, B.; Lau, T.L. Experimental investigation of tsunami bore impact pressure on a perforated seawall. Appl. Ocean Res. 2019, 84, 291–301. [CrossRef]

7. Takagi, H.; Tomiyasu, R.; Oyake, T.; Araki, T.; Mori, K.; Matsubara, Y.; Ninomiya, Y.; Takata, Y. Tsunami intrusion through port breakwaters enclosed with self-elevating seawalls. Ocean Eng. 2020, 199, 107028. [CrossRef]

8. Jayaratne, M.P.R.; Premaratne, B.; Adewale, A.; Mikami, T.; Matsuba, S.; Shibayama, T.; Esteban, M.; Nistor, I. Failure Mechanisms and Local Scour at Coastal Structures Induced by Tsunami. Coast. Eng. J. 2016, 58, 1640017. [CrossRef]

9. Hu, P.; Tan, L.; He, Z. Numerical Investigation on the Adaptation of Dam-Break Flow-Induced Bed Load Transport to the Capacity Regime over a Sloping Bed. J. Coast. Res. 2020, 36, 1237–1246. [CrossRef]

10. Stansby, P.K.; Chegini, A.; Barnes, T.C.D. The initial stages of dam-break flow. J. Fluid Mech. 1998, 374, 407–424. [CrossRef]

11. Ritter, A. Die fortpflanzung der wasserwellen. Z. Ver. Dtsch. Ing. 1892, 36, 947–954.

12. Lauber, G.; Hager, W.H. Experiments to dambreak wave: Horizontal channel. J. Hydraul. Res. 1998, 36, 291–307. [CrossRef]

13. Nistor, I.; Palermo, D.; Nouri, Y.; Murty, T.; Saatcioglu, M. Tsunami-Induced Forces on Structures. In Handbook of Coastal and Ocean Engineering; World Scientific: Singapore, 2009; pp. 261–286.

14. Munoz, D.H.; Constantinescu, G. 3-D dam break flow simulations in simplified and complex domains. Adv. Water Resour. 2020, 137, 103510. [CrossRef]

15. Lobovský, L.; Botia-Vera, E.; Castellana, F.; Mas-Soler, J.; Souto-Iglesias, A. Experimental investigation of dynamic pressure loads during dam break. J. Fluids Struct. 2014, 48, 407–434. [CrossRef]

16. Hsu, H.C.; Freyermuth, A.T.; Hsu, T.J.; Hwung, H.H.; Kuo, P.C. On dam-break wave propagation and its implication to sediment erosion. J. Hydraul. Res. 2014, 52, 205–218. [CrossRef]

17. Wang, B.; Liu, W.; Wang, W.; Zhang, J.; Chen, Y.; Peng, Y.; Liu, X.; Yang, S. Experimental and numerical investigations of similarity for dam-break flows on wet bed. J. Hydrol. 2020, 583, 124598. [CrossRef]

18. Capart, H.; Young, D.L. Formation of a jump by the dam-break wave over a granular bed. J. Fluid Mech. 1998, 372, 165–187. [CrossRef]

19. Carrivick, J.L. Dam break–Outburst flood propagation and transient hydraulics: A geosciences perspective. J. Hydrol. 2010, 380, 338–355. [CrossRef]

20. Çag˘ atay, H.; Kocaman, S. Experimental study of tailwater level effects on dam break flood wave propagation. Proc. River Flow 2008, 1, 635–644.

21. Esteban, M.; Glasbergen, T.; Takabatake, T.; Hofland, B.; Nishizaki, S.; Nishida, Y.; Stolle, J.; Nistor, I.; Bricker, J.; Takagi, H.; et al. Overtopping of Coastal structures by tsunami waves. Geoscience 2017, 7, 121. [CrossRef]

22. Stolle, J.; Ghodoosipour, B.; Derschum, C.; Nistor, I.; Petriu, E.; Goseberg, N. Swing gate generated dam-break waves. J. Hydraul. Res. 2019, 57, 675–687. [CrossRef]

23. von Häfen, H.; Goseberg, N.; Stolle, J.; Nistor, I. Gate-opening criterial for generating dam-break waves. J. Hydraul. Eng. 2019, 145, 1–13. [CrossRef]

24. Cagatay, H.O.; Kocaman, S. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid Mech. 2011, 5, 541–552.

25. Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959; p. 680.

26. Schoklitsch, A. Uber Dambruchwellen. Sitzber Akad. Wiss. Wien. 1917, 126, 1489–1514.

27. Dressler, R.F. Hydraulic Resistance Effect Upon the Dam-Break Functions. Natl. Bur. Stand. 1952, 49, 217–225. [CrossRef]

28. Witham, G.B. The effects of hydraulic resistance in dam-break problem. Proc. R. Soc. A 1955, 227, 399–407.

29. Mano, A. Boundary layer developed near surging front. Coast. Eng. Jpn. 1994, 37, 23–39. [CrossRef]

30. Ye, Z.; Zhao, X.; Deng, Z. Numerical investigation of the gate motion effect on a dam break flow. J. Mar. Sci. Technol. 2016, 21, 579–591. [CrossRef]

31. Shigematsu, T.; Liu, P.L.-F.; Oda, K. Numerical modeling of the initial stages of dam-break waves. J. Hydraul. Res. 2004, 42, 183–195. [CrossRef]

32. Goda, Y. Dynamic response of upright breakwaters to impulsive breaking wave forces. Coast. Eng. 1994, 22, 135–158. [CrossRef]

33. Stoker, J.J. Water Waves; Wiley: Hoboken, NJ, USA, 1957; pp. 451–509.

34. Cagatay, H.O.; Kocaman, S. Dam-break flows during initial stage using SWE and RANS approaches. J. Hydraul. Res. 2010, 48, 603–611. [CrossRef]

35. Schlichting, H.; Gersten, K. Boundary-Layer Theory; McGraw Hill: New York, NY, USA, 1979.

36. Soleimani, K.; Ketabdari, M.J. Meshfree modeling of near field two-liquid mixing process in the presence of different obstacles. Ocean. Eng. 2020, 213, 107625. [CrossRef]

37. Asadollahi, N.; Nistor, I.; Mohammadian, A. Numerical investigation of tsunami bore effects on structures, part I: Drag coefficients. Nat. Hazards 2019, 96, 285–309. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る