リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「リン可給性をめぐる土壌微生物群集」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

リン可給性をめぐる土壌微生物群集

國頭, 恭 諸, 人誌 藤田, 一輝 美世, 一守 長岡, 一成 大塚, 重人 信州大学 DOI:10.18946/jssm.73.2_41

2020.06.03

概要

2008年,中国がリン鉱石の輸出に高い関税をかけたことから中国のリン鉱石輸出が実質的に停止し,世界でのリン鉱石の価格が約8倍に高騰した18)。これを契機にリン資源枯渇の懸念が高まり23,35,137),リン資源が50年から100年で枯渇するという予測も報告された19)。現在まで,リン鉱石の埋蔵量と質が不明なため,その可採年数には一致した見解は得られていない18)。

年々,不純物の少ない高品質のリン鉱石の採掘比率は低減しており,また世界最大の埋蔵量をもつモロッコのリン鉱石は,カドミウムや放射性物質を多く含んでいる98)。このような低品質のリン鉱石の精製と不純物の処理にはコストがかかるうえ120),新たなリン鉱山の開発にも莫大な投資が必要なため,今後リンの価格は上昇していくと予想される98)。また,リン酸肥料の価格上昇に加え,農地へのリン酸の過剰施用による湖沼や沿岸域の富栄養化112)や作物の病害発生の助長38)といった問題も生じている。

このような背景から,リン酸の減肥とともに,「legacyP」150)と呼ばれる農地に蓄積したリン酸の有効化に関する研究が盛んに行われている76,150)。特に日本では,リン酸施用量から作物吸収量を差し引いたリン酸肥料の過剰量が,世界的に見ても極めて高く,農地に大量のリン酸が蓄積している79,113)。西ヨーロッパでは,リン酸施用量は1970年代後半をピークに減少しているにもかかわらず,作物のリン酸吸収量はその後も増加・安定化しているため,それまでに農地に蓄積したリン酸が有効化したと考えられている117)。このようなlegacyPの有効化に関する研究はこれまで,日本の畑地144)や水田57)でもなされてきたが,2008年のリン鉱石価格の高騰以降,世界的に再燃したというのが実状であろう。ただし現在の研究の特徴として,既往の研究ではあまり対象とされてこなかった有機態リンが注目されていることが挙げられる34,123)。例えば,日本の黒ボク土畑土壌において化学肥料のみを施用した場合でも,有機態リンの蓄積は,無機態リン酸に比べれば少ないものの,無視できない量である(図1)。水田ではリンの利用効率は高いため90),ここではリン利用効率が低い黒ボク土の畑地に蓄積したリン酸の可給化に焦点を当てる。

Zhuetal.159)は,農地に蓄積したリン酸を可給化する微生物や資材などを「phosphorus activators」と呼んでいる。これらには,アーバスキュラー菌根菌,リン溶解菌,ホスファターゼ,微生物バイオマスリン,有機酸等の有機物施用,土壌の還元化,ポリマルチによる加温などが含まれる89,113,159)。アーバスキュラー菌根菌は,リン肥沃度の高い土壌では効果を発現しにくいものの,土壌中のリン酸の可給化には有望であり113),多くの研究が行われている。ここでは研究例の乏しい,あるいはその有用性が明瞭ではない,リン溶解菌,ホスファターゼ,微生物バイオマスリン,土壌の還元化について,関連する基礎的情報を紹介する。

参考文献

1)Acuña JJ, Durán P, Lagos LM, Ogram A, Mora ML, Jorquera MA (2016) Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biol. Fertil. Soils, 52, 763–773

2)An R, Moe LA (2016) Regulation of pyrroloquinoline quinonedependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Appl. Environ. Microbiol., 82, 4955–4964

3) Ayaga G, Todd A, Brookes PC (2006) Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem., 38, 81–90

4)Beegle D (2005) Assessing soil phosphorus for crop production by soil testing. In Phosphorus: Agriculture and the Environment, (Ed.) JT Sims, AN Sharpley, pp. 123–143, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin

5) Bergkemper F, Kublik S, Lang F, Krüger J, Vestergaard G, Schloter M, Schulz S (2016a) Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorus turnover in soil. J. Microbiol. Meth., 125, 91–97

6) Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016b) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ. Microbiol., 18, 1988–2000

7)Berry DF, Shang C, Zelazny LW (2009) Measurement of phytase activity in soil using a chromophoric tethered phytic acid probe. Soil Biol. Biochem., 41, 192–200

8)Berry DF, Walker HL, Harich K, Shang C (2011) Assessing phytase activity in forested and agricultural soils using TInsP5 as a substrate analog. Soil Sci. Soc. Am. J., 75, 880–889

9)Bi QF, Zheng BX, Lin XY, Li KJ, Liu XP, Hao XL, Zhang H, Zhang JB, Jaisi DP, Zhu YG (2018) The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chem. Geol., 483, 56–64

10) Bünemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus—A review. Soil Biol. Biochem., 89, 82–98

11) Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem., 58, 216–234

12) Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In Organic Phosphorus in the Environment, (Ed.), BL Turner, E Frossard, DS Baldwin, pp. 113–132, CABI Publishing, Wallingford, UK

13) Chen X, Jiang N, Condron LM, Dunfield KE, Chen Z, Wang J, Chen L (2019) Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Sci. Total Environ., 669, 1011–1018

14) Chhabra S, Brazil D, Morrissey J, Burke J, O’Gara F, Dowling DN (2013a) Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils, 49, 31–39

15) Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara F, Dowling DN (2013b) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. MicrobiologyOpen, 2, 717–724

16) Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem., 84, 168–176

17) Colvan SR, Syers JK, O’Donnell AG (2001) Effect of long-term fertilizer use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol. Fertil. Soils, 34, 258–263

18) Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour., 39, 161–188

19) Cordell D, Drangert J-O, White S (2009) The story of phosphorus: Global food security and food for thought. Global Environ. Change, 19, 292–305

20)Damon PM, Bowden B, Rose T, Rengel Z (2014) Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem., 74, 127–137

21) Ding L, Wu J, Xiao H, Zhou P, Syers JK (2012) Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil. J. Sci. Food Agric., 92, 1073–1079

22)Doolette AL, Smernik RJ, Dougherty WJ (2010) Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution 31P NMR study. Eur. J. Soil Sci., 61, 563–575

23) Elser J, Bennett E (2011) A broken biogeochemical cycle. Nature, 478, 29–31

24)Fixen PE, Grove JH (1990) Testing soils for phosphorus. In Soil Testing and Plant Analysis, 3rd ed., (Ed.) RL Westerman, pp. 141–180, Soil Science Society of America, Madison, Wisconsin

25) Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE (2015a) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol. Biochem., 88, 137–147

26) Fraser T, Lynch DH, Entz MH, Dunfield KE (2015b) Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma, 257–258, 115–122

27) Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE (2017) Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl. Soil Ecol., 111, 48–56

28) Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In Phosphorus in the Global Environment, (Ed.) H Tiessen, pp. 107–137, John Wiley & Sons, Chichester

29) Fujita K, Kunito T, Moro H, Toda H, Otsuka S, Nagaoka K (2017) Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils. Biogeochemistry, 136, 325–339

30)藤田一輝・諸 人誌・大塚重人・長岡一成・國頭 恭(2019) 土壌中の養分利用性と微生物による酵素生産との関係: 資源配分モデルを中心に,土と微生物,73, 10–23

31)古川秀顕・川口桂三郎(1969)湛水による易溶リン増加 に対する有機リンの寄与,土肥誌,40, 141–148

32) Gaiero JR, Bent E, Fraser TD, Condron LM, Dunfield KE (2018) Validating novel oligonucleotide primers targeting three classes of bacterial non-specific acid phosphatase genes in grassland soils. Plant Soil, 427, 39–51

33) Gandhi NU, Chandra SB (2012) A comparative analysis of three classes of bacterial non-specific acid phosphatases and archaeal phosphoesterases: evolutionary perspective. Acta Inform. Med., 20, 167–173

34)George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil, 427, 191–208

35) Gilbert N (2009) The disappearing nutrient. Nature, 461, 716–718

36) Gomes-Vieira AL, Wideman JG, Paes-Vieira L, Gomes SL, Richards TA, Meyer-Fernandes JR (2018) Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet. Biol., 115, 20–32

37) Gontia-Mishra I, Tiwari S (2013) Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol. Biotechnol., 51, 313–326

38)後藤逸男(2016)園芸土壌のリン酸過剰がもたらす弊害 とその対策,肥料科学,38, 49–78

39) Greiner R (2007) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. In Inositol Phosphates: Linking Agriculture and the Environment, (Ed.) BL Turner, AE Richardson, EJ Mullaney, pp. 78–96, CAB International, Wallingford

40)Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil, 245, 83–93

41) Hara S, Saito M (2016) Isolation of inositol hexaphosphate (IHP)-degrading bacteria from arbuscular mycorrhizal fungal hyphal compartments using a modified baiting method involving alginate beads containing IHP. Microbes Environ., 31, 234–243

42)早野恒一(1997)植物の窒素,リン栄養と微生物,In 新・ 土の微生物(2)植物の生育と微生物,土壌微生物研究会  編,pp. 133–165,博友社,東京

43) He Z, Zhu J (1998) Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biol. Biochem., 30, 917–923

44)Hill JE, Richardson AE (2007) Isolation and assessment of microorganisms that utilize phytate. In Inositol Phosphates: Linking Agriculture and the Environment, (Ed.) BL Turner, AE Richardson, EJ Mullaney, pp. 61–77, CAB International, Wallingford

45) Hong J-K, Yamane I (1981) Distribution of inositol phosphate in the molecular size fractions of humic and fulvic acid fractions. Soil Sci. Plant Nutr., 27, 295–303

46)Jakobsen I, Leggett ME, Richardson AE (2005) Rhizosphere microorganisms and plant phosphorus uptake. In Phosphorus: Agriculture and the Environment, (Ed.) JT Sims, AN Sharpley, pp. 437–494, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin

47) Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, Soil Biology 26, (Ed.) EK Bünemann, A Oberson, E Frossard, pp. 169–198, SpringerVerlag, Berlin

48)Jorquera M, Martínez O, Maruyama F, Marschner P, Mora ML (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ., 23, 182–191

49) Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernández MT, Romero D, Menezes-Blackburn D, Mora ML (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol., 75, 163–172

50)Jorquera MA, Saavedra N, Maruyama F, Richardson AE, Crowley DE, Catrilaf RC, Henriquez EJ, Mora ML (2013) Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere. FEMS Microbiol. Ecol., 83, 352–360

51) Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl. Environ. Microbiol., 77, 5178–5183

52) Kamprath EJ, Watson ME (1980) Conventional soil and tissue tests for assessing the phosphorus status of soils. In The Role of Phosphorus in Agriculture, (Ed.) FE Khasawneh, EC Sample, EJ Kamprath, pp. 433–469, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin

53)加藤秀正(1994)酸性土壌におけるリン酸の動態,In 低 pH 土壌と植物,日本土壌肥料学会 編,pp. 123–154,博 友社,東京

54)Kato N, Zapata F, Fardeau JC (1995) The ability of chemical extraction methods to estimate plant-available soil P and a better understanding of P availability of fertilized Andosols by using isotopic methods. Soil Sci. Plant Nutr., 41, 781–789

55) Keiluweit M, Nico PS, Kleber M, Fendorf S (2016) Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127, 157–171

56) Keiluweit M, Gee K, Denney A, Fendorf S (2018) Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem., 118, 42–50

57)古賀野完爾(1984)寒地水田における蓄積リン酸の肥効 と変動,In 水田土壌とリン酸―供給力と施肥―,日本土 壌肥料学会 編,pp. 59–86,博友社,東京

58) Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Technol., 37, 791–812

59)金野隆光・弘法健三(1970)透水条件下における水田土 壌の物質変化(第 2 報)水田土壌のリン酸について,土 肥誌,41, 225–229

60)河野憲治(1996)土壌バイオマス形成とリンのフロー, 土肥誌,67, 716–725

61) Kunito T, Tsunekawa M, Yoshida S, Park H-D, Toda H, Nagaoka K, Saeki K (2012) Soil properties affecting phosphorus forms and phosphatase activities in Japanese forest soils: Soil microorganisms may be limited by phosphorus. Soil Sci., 177, 39–46

62) Kunito T, Hiruta N, Miyagishi Y, Sumi H, Moro H (2018a) Changes in phosphorus fractions caused by increased microbial activity in forest soil in a short-term incubation study. Chem. Speciation Bioavail., 30, 9–13

63) Kunito T, Shiroma T, Moro H, Sumi H (2018b) Annual variation in soil enzyme activity in a paddy field: Soil temperature and nutrient availability are important for controlling enzyme activities. Appl. Environ. Soil Sci., 2018, 4093219

64)Kyuma K (2004) Paddy Soil Science, Kyoto University Press, Kyoto, and Trans Pacific Press, Melbourne

65) Lidbury IDEA, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Hammond JP, Wellington EMH (2016) Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environ. Microbiol., 18, 3535–3549

66)Lidbury IDEA, Fraser TD, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Wellington EMH (2017) The ‘known’ genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. MicrobiologyOpen, 6, e474

67) Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J., 1, 321–330

68)Long XE, Yao H, Huang Y, Wei W, Zhu YG (2018) Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biol. Biochem., 118, 103–114

69) Luo H, Benner R, Long RA, Hu J (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. USA, 106, 21219–21223

70) Luo G, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo S, Shen Q (2017) Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils, 53, 375–388

71) Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol. Biochem., 44, 93–101

72) Martin M, Celi L, Barberis E (2004) Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite. Soil Sci., 169, 115–124

73) Marui J, Tada S, Fukuoka M, Suzuki S, Hattori R, Wagu Y, Shiraishi Y, Kitamoto N, Sugimoto T, Kusumoto K (2012) Comparison of acid phosphatase gene expression profiles in solid-state rice and soybean cultures of an Aspergillus oryzae strain with low acid phosphatase activity (KBN8048): implications for miso brewing. Food Sci. Technol. Res., 18, 83–90

74) Mehta BD, Jog SP, Johnson SC, Murthy PPN (2006) Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP). Phytochemistry, 67, 1874–1886

75) Menezes-Blackburn D, Jorquera MA, Greiner R, Gianfreda L, Mora ML (2013) Phytases and phytase-labile organic phosphorus in manures and soils. Crit. Rev. Environ. Sci. Technol., 43, 916–954

76) Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L, Almeida DS, Wearing C, Zhang H, Haygarth PM (2018) Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil, 427, 5–16

77) Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ. Microbiol. Rep., 2, 403–411

78) Mise K, Fujita K, Kunito T, Senoo K, Otsuka S (2018) Phosphorusmineralizing communities reflect nutrient-rich characteristics in Japanese arable Andisols. Microbes Environ., 33, 282–289

79) Mishima S, Itahashi S, Kimura R, Inoue T (2003) Trends of phosphate fertilizer demand and phosphate balance in farmland soils in Japan. Soil Sci. Plant Nutr., 49, 39–45

80)三宅正紀(1984)熱帯の水田におけるリン酸の肥効,In 水田土壌とリン酸―供給力と施肥―,日本土壌肥料学会  編,pp. 127–164,博友社,東京

81)門馬法明(2017)土壌還元消毒の普及の現状と今後の展望, 土と微生物,71, 24–28

82) Monds RD, Newell PD, Schwartzman JA, O’Toole GA (2006) Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl. Environ. Microbiol., 72, 1910–1924

83) Moro H, Kunito T, Sato T (2015) Assessment of phosphorus bioavailability in cultivated Andisols from a long-term fertilization field experiment using chemical extractions and soil enzyme activities. Arch. Agron. Soil Sci., 61, 1107–1123

84)Morrison E, Newman S, Bae HS, He Z, Zhou J, Reddy KR, Ogram A (2016) Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within a subtropical peatland. Geoderma, 268, 119–127

85) Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun., 312, 179–184

86) Mullaney EJ, Ullah AHJ (2007) Phytases: attributes, catalytic mechanisms and applications. In Inositol Phosphates: Linking Agriculture and the Environment, (Ed.) BL Turner, AE Richardson, EJ Mullaney, pp. 97–110, CAB International, Wallingford

87) Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, Soil Biology 26, (Ed.) EK Bünemann, A Oberson, E Frossard, pp. 215–243, Springer-Verlag, Berlin

88) Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils, 48, 743–762

89)南條正巳(2010a)黒ボク土壌に多量に蓄積したリン酸は 利用可能か,ペドロジスト,54, 45–51

90)南條正巳(2010b)土壌のリン,In 文化土壌学からみたリン, 日本土壌肥料学会 編,pp. 129–146,博友社,東京

91)南條正巳・高橋智紀・庄子貞雄(1996)還元剤を用いる 水田土壌中の可給態リン含量の簡易測定法,土肥誌,67, 73–77

92)Nanzyo M, Onodera H, Hasegawa E, Ito K, Kanno H (2013) Formation and dissolution of vivianite in paddy field soil. Soil Sci. Soc. Am. J., 77, 1452–1459

93) Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW (2014) Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma, 221–222, 11–19

94)Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR (2017) Land-use inf luences phosphatase gene microdiversity in soils. Environ. Microbiol., 19, 2740–2753

95) Neal AL, Blackwell M, Akkari E, Guyomar C, Clark I, Hirsch PR (2018) Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific acid-phosphatase gene diversity and abundance. Plant Soil, 427, 175–189

96)西尾道徳・木村龍介(1986)リン溶解菌とその農業利用 の可能性,土と微生物,28, 31–40

97) Oh B-C, Choi W-C, Park S, Kim Y-O, Oh T-K (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol., 63, 362–372

98)大竹久夫・常田 聡(2017)リン最前線―リサイクルは どこへ―,再生と利用,42, 6–12

99) Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems, 7, 404–419

100) Olander LP, Vitousek PM (2005) Short-term controls over inorganic phosphorus during soil and ecosystem development. Soil Biol. Biochem., 37, 651–659

101) O’Brien PJ, Herschlag D (2001) Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry, 40, 5691–5699

102) Otani T, Ae N (1999) Extraction of organic phosphorus in Andosols by various methods. Soil Sci. Plant Nutr., 45, 151–161

103) Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl. Environ. Microbiol., 81, 7281–7289

104) Ragot SA, Huguenin-Elie O, Kertesz MA, Frossard E, Bünemann EK (2016) Total and active microbial communities and phoD as affected by phosphorus depletion and pH in soil. Plant Soil, 408, 15–30

105) Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK (2017) Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol. Ecol., 93, fiw212

106) Reitzel K, Jensen HS, Turner BL, Jørgensen C (2018) Influence of pH and redox on mobilization of inositol hexakisphosphate from oligotrophic lake sediment. Biogeochemistry, 140, 15–30

107) Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol., 28, 897–906

108) Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol., 156, 989–996

109) Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil, 349, 121–156

110) Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil, 287, 15–21

111) Rossolini GM, Schippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell. Mol. Life Sci., 54, 833–850

112) Rowe H, Withers PJA, Baas P, Chan NI, Doody D, Holiman J, Jacobs B, Li H, MacDonald GK, McDowell R, Sharpley AN, Shen J, Taheri W, Wallenstein M, Weintraub MN (2016) Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst., 104, 393–412

113)齋藤雅典(2011)リン資源の枯渇と農業生産への有効利用, 遺伝,65, 32–38

114)齊藤奏枝・松野更和・平井英明・加藤秀正・前田忠信(2007) アロフェン質黒ボク土水田における有効態リン酸の周年 変動と牛ふん堆肥連用の効果,土肥誌,78, 283–289

115) Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr., 54, 62–71

116) Sanguin H, Wilson NL, Kertesz MA (2016) Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere. Plant Soil, 401, 151–167

117) Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA, 109, 6348–6353

118) Shears SB, Turner BL (2007) Nomenclature and terminology of inositol phosphates: clarification and a glossary of terms. In Inositol Phosphates: Linking Agriculture and the Environment, (Ed.) BL Turner, AE Richardson, EJ Mullaney, pp. 1–6, CAB International, Wallingford

119) Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil, 349, 89–120

120) Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ., 25, 53–88

121) Stewart JWB, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogeochemistry, 4, 41–60

122) Stout LM, Nguyen TT, Jaisi DP (2016) Relationship of phytate, phytate-mineralizing bacteria, and beta-propeller phytase genes along a coastal tributary to the Chesapeake Bay. Soil Sci. Soc. Am. J., 80, 84–96

123) Stutter MI, Shand CA, George TS, Blackwell MSA, Bol R, MacKay RL, Richardson AE, Condron LM, Turner BL, Haygarth PM (2012) Recovering phosphorus from soil: A root solution? Environ. Sci. Technol., 46, 1977–1978

124)杉戸智子(2011)黒ボク土壌でのリン酸肥沃度の再評価 ―土壌微生物バイオマスリンは指標となるのか?―,土 と微生物,65, 34–40

125) Sugito T, Yoshida K, Takebe M, Shinano T, Toyota K (2010) Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. Soil Sci. Plant Nutr., 56, 390–398

126) Sun Q, Qiu H, Hu Y, Wei X, Chen X, Ge T, Wu J, Su Y (2019) Cellulose and lignin regulate partitioning of soil phosphorus fractions and alkaline phosphomonoesterase encoding bacterial community in phosphorus-deficient soils. Biol. Fertil Soils, 55, 31–42

127) Suzumura M, Kamatani A (1995) Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: Implications for the phosphorus cycle. Geochim. Cosmochim. Acta, 59, 1021–1026

128)武田容枝(2010)土壌リンの存在形態と生物循環,土と 微生物,64, 25–32

129) Tamburini F, Pfahler V, Bünemann EK, Guelland K, Bernasconi SM, Frossard E (2012) Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ. Sci. Technol., 46, 5956–5962

130) Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils, 49, 661–672

131) Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol. Biochem., 38, 1316–1324

132) Tate KR (1984) The biological transformation of P in soil. Plant Soil, 76, 245–256

133) Trolard F, Bourrié G (2008) Geochemistry of green rusts and fougerite: a reevaluation of Fe cycle in soils. Adv. Agron., 99, 227–288

134) Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Phil. Trans. R. Soc. Lond. B, 357, 449–469

135) Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ., 28, 120–127

136) Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analyzed by phytate utilization ability. Environ. Microbiol., 7, 396–404

137) Vaccari, D.A.(2009)迫り来るリン資源の危機,日経サイ エンス,2009 年 9 月号,88–93

138) Vershinina OA, Znamenskaya LV (2002) The Pho regulons of bacteria. Microbiology, 71, 497–511

139) Villamizar GAC, Nacke H, Boehning M, Herz K, Daniel R (2019) Functional metagenomics reveals an overlooked diversity and novel features of soil-derived bacterial phosphatases and phytases. mBio, 10, e01966–18

140)和田秀徳・野中昌法・高井康雄(1985)湛水土壌の浸透 水中に含まれる形態別リン含量の経時的変化,土肥誌, 56, 37–42

141) Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol. Biochem., 40, 2098–2106

142) Walpersdorf E, Koch CB, Heiberg L, O’Connell DW, Kjaergaard C, Hansen HCB (2013) Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma, 193–194, 189– 199

143) Wang Y, Hasbullah H, Setia R, Marschner P, Zhang F (2012) Potential soil P mobilisation capacity—method development and comparison of rhizosphere soil from different crops. Plant Soil, 354, 259–267

144) Watanabe K, Hirata H (1998) Increase in phosphorus availability of upland Andosol under different fertilization conditions measured by isotopic techniques. Soil Sci. Plant Nutr., 44, 471– 476

145) Wei X, Hu Y, Razavi BS, Zhou J, Shen J, Nannipieri P, Wu J, Ge T (2019) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol. Biochem., 131, 62–70

146) Weihrauch C, Opp C (2018) Ecologically relevant phosphorus pools in soils and their dynamics: The story so far. Geoderma, 325, 183–194

147) White AE (2009) New insights into bacterial acquisition of phosphorus in the surface ocean. Proc. Natl. Acad. Sci. USA, 106, 21013–21014

148) Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron., 69, 99–151

149) Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem., 31, 655–665

150) Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ. Sci. Technol., 48, 6523–6530

151) Wu J, Huang M, Xiao HA, Su YR, Tong CL, Huang DY, Syers JK (2007) Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant Soil, 290, 333–342

152) Yamane K, Maruo B (1978) Alkaline phosphatase possessing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis. J. Bacteriol., 134, 108–114

153) Yao M-Z, Zhang Y-H, Lu W-L, Hu M-Q, Wang W, Liang A-H (2011) Phytases: crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol., 112, 1–14

154)Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, Tfaily MM, Paša-Tolić L, Hazen TC, Turner BL, Mayes MA, Pan C (2018) Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol., 2, 499–509

155) Yuan Z-C, Zaheer R, Morton R, Finan TM (2006) Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res., 34, 2686–2697

156) Zachara JM, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J., 19, 179–207

157) Zaheer R, Morton R, Proudfoot M, Yakunin A, Finan TM (2009) Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Environ. Microbiol., 11, 1572–1587

158) Zheng BX, Zhang DP, Wang Y, Hao XL, Wadaan MAM, Hozzein WN, Peñuelas J, Zhu YG, Yang XR (2019) Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Sci. Rep., 9, 25.

159) Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ., 612, 522–537

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る