リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「土壌中の養分利用性と微生物による酵素生産との関係:資源配分モデルを中心に」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

土壌中の養分利用性と微生物による酵素生産との関係:資源配分モデルを中心に

藤田, 一輝 諸, 人誌 大塚, 重人 長岡, 一成 國頭, 恭 信州大学 DOI:10.18946/jssm.73.1_10

2020.06.03

概要

微生物にとって必須な元素である炭素,窒素およびリンは,土壌中でその多くが高分子の有機物に含まれて存在しているため,微生物は直接利用することができない。そこで微生物はこれら元素を獲得するため,多様な有機物分解酵素を生産し細胞外へ分泌している5,20)。この細胞外酵素の活性は,植物リターや土壌有機物の分解速度と強い相関を持つことが報告されている22,97,98,118)。細胞外へ分泌された酵素の一部は,粘土鉱物や腐植物質に吸着することで長期にわたって土壌中に残存し,活性を維持することが知られている21)。本稿では,微生物細胞表面に位置する酵素(エクトエンザイム)と,土壌粒子に吸着して存在する酵素をあわせて細胞外酵素として扱う。なお細胞外酵素と細胞内酵素の活性を厳密に区別して測定する方法は確立されていないため75),得られる測定値には両者の活性が含まれるが,とくに細胞外で機能することが予想される酵素に関しては,土壌酵素活性と細胞外酵素活性を同義に扱う場合が多い。また土壌酵素活性は,基質が十分にある条件で測定されるため,実際の土壌中での活性ではなく酵素量に相当するものである120)。土壌酵素の種類や特性については他の文献を参照されたい46,47,54,55,57)。

微生物は細胞外酵素の生産により必要な養分を獲得できるが,他方,細胞外へ分泌する酵素を構成している成分に加え,酵素の生産と細胞外への分泌に用いる代謝エネルギーといったコストもかかる7)。例えば,微生物は取り込んだ炭素と窒素の1~5%を細胞外酵素生産に消費するとされている7,21)。このため微生物は「経済法則」に従い,細胞外酵素生産に伴う費用と効果とのバランスをとる必要がある4,7)。この必要性から,微生物は細胞外に基質が無い場合でも常に低レベルで細胞外酵素を生産・分泌し,もし基質が流入して,この基底レベルで生産した細胞外酵素により生じた分解産物を感知すると,酵素生産を増加させる。そして基質が無くなると,再び酵素生産を基底レベルまで下げるといった調節を行っている26,119)。

微生物による細胞外酵素生産の調節機構は,特定の微生物種を用いた室内実験において詳細に研究されてきたが,土壌中の微生物群集全体において,養分利用性に応じて細胞外酵素生産がどのように調節されているのかについての理解は不十分である。これまでの研究により,土壌中の養分利用性や基質の量が酵素活性に影響を与えることは判明しているが43),その関係は土壌によって異なり一般性のある結論は得られていない。

例えば,土壌中のホスファターゼ活性とリン濃度との関係については古くから多くの研究がされてきたが,一致した結果は得られていない。ホスファターゼ活性との正の相関が無機態リン濃度11,58,86,92,113)や有機態リン濃度11,24,50,58,63,92,115)との間にみられたという報告がある一方で,負の相関が無機態リン濃度24,28,87,124)や全リン濃度6)との間にみられたとする報告もある。さらには,ホスファターゼ活性は無機態リン濃度19,45,63,105)や有機態リン濃度45)と有意な相関を示さなかったという報告もある。ホスファターゼ活性とリン濃度に正の相関がある場合は,ホスファターゼ活性が高いため分解産物である無機態リンが増加した,あるいは基質となる有機態リンが多いためホスファターゼが多く生産されたと解釈されることが多い。また負の相関がある場合は,リン濃度が高いため,ホスファターゼ生産が抑制されたと推察されている。

仮に土壌中の酵素生産と養分利用性との関係が定常状態に近い状態であるとするならば,前述した経済法則に従い,酵素活性と養分利用性との間には負の相関がみられることが予想される。しかしながら,先述したようにリン濃度とホスファターゼ活性との間に負の相関が得られない場合も多くあるため,Fatemi et al. 33)は,ホスファターゼ活性をリン利用性の指標として用いることに疑問を呈している。このような研究間での不一致には,いくつかの理由が考えられる。例えば,土壌中の有機物が多くリン濃度が高いほど微生物バイオマスが高くなり,仮に単位バイオマス当たりのホスファターゼ生産量が低くても,ホスファターゼ活性とリン濃度に正の相関が得られる可能性がある。一方Olander and Vitousek 80)は,ホスファターゼ生産がリンではなく窒素や炭素などによって調節されている可能性や,細胞外で長期にわたり残存しているホスファターゼが多いため,基質濃度とホスファターゼ活性の関連がみえにくくなっている可能性を示唆している。またWeedon et al. 121)は土壌中の基質量の影響を指摘している。基質が多く存在する場合には酵素を多く生産するほど分解産物が多く生成されるので,分解産物と酵素活性との間には正の相関がみられるが,基質が少ない場合には,酵素を多く生産しても得られる分解産物は少ないため,分解産物と酵素活性との間には負の相関が生じることがある。

本稿では,いまだ不明な点が多い,土壌中における微生物群集の酵素生産と養分利用性との関係を,細胞外酵素生産の「資源配分モデル」を中心に概説する。本稿での解析には,筆者らの過去のデータ38–40,67,74)を供した。これらのデータには,風乾土を再湿潤させ1週間培養した試料と,冷蔵あるいは冷凍保存した試料の値が含まれている。風乾土を再湿潤した場合には,もとの湿潤土よりも酵素活性は低下するものの59),酵素活性の比と養分濃度との関係においては,試料の保存法による有意な影響は認められなかった38,39)。また風乾土を再湿潤させ1週間培養した場合,培養期間中,酵素活性比はほぼ一定の値を示した38,39)。そこで,これらデータを一括して解析に用いた。なお本稿では,可給態養分濃度とは,抽出法等により測定した,植物の成長や養分吸収量と相関を示す養分濃度を指すのに対し,養分利用性とは真に生物が利用できる養分量を意味する。Beegle13)とHedley48)も指摘しているように,可給態養分濃度はあくまでも養分利用性と相関を示すだけであって,その絶対値が利用可能な養分量に相当するわけではない。例えば,同じ可給態リン酸濃度の測定に使われるトルオーグ法とブレイ法でも得られる値には大きな違いがあり,同一の土壌試料でもブレイ法の方が数倍高い値を示すことが知られている38,74)。

参考文献

1)Acosta-Martínez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils, 31, 85–91

2)Aldén L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl. Environ. Microbiol., 67, 1830–1838

3) Allison C, Macfarlane GT (1990) Regulation of protease production in Clostridium sporogenes. Appl. Environ. Microbiol., 56, 3485–3490

4)Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem., 37, 937–944

5) Allison SD, Gartner TB, Holland K, Weintraub M, Sinsabaugh RL (2007a) Soil enzymes: linking proteomics and ecological processes. In Manual of Environmental Microbiology, 3rd ed., (Ed.) CJ Hurst, pp. 704–711, ASM Press, Washington, DC

6) Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007b) Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem., 39, 1770–1781

7)Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil Enzymology, (Ed.) G Shukla, A Varma, pp. 229–243, Springer-Verlag, Berlin

8)Atkinson MR, Fisher SH (1991) Identification of genes and gene products whose expression is activated during nitrogenlimited growth in Bacillus subtilis. J. Bacteriol., 173, 23–27

9)Averill C (2014) Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes. Ecol. Lett., 17, 1202–1210

10) Bach H-J, Hartmann A, Schloter M, Munch JC (2001) PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil. J. Microbiol. Meth., 44, 173–182

11) Baligar VC, Wright RJ, Smedley MD (1988) Acid phosphatase activity in soils of the Appalachian region. Soil Sci. Soc. Am. J., 52, 1612–1616

12) Bárta J, Šlajsová P, Tahovská K, Picek T, Šantrůčková H (2014) Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shfts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry, 117, 525–537

13) Beegle D (2005) Assessing soil phosphorus for crop production by soil testing. In Phosphorus: Agriculture and the Environment, (Ed.) JT Sims, AN Sharpley, pp. 123–143, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin

14) Beier S, Bertilsson S (2013) Bacterial chitin degradation— mechanisms and ecophysiological strategies. Front. Microbiol., 4, 149

15) Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ. Microbiol., 18, 1988–2000

16) Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol., 79, 1545–1554

17) Binkley D, Fisher RF (2013) Ecology and Management of Forest Soils, fourth edition, Wiley-Blackwell, Chichester

18) Binkley D, Vitousek P (1989) Soil nutrient availability. In Plant Physiological Ecology: Field Methods and Instrumentation, (Ed.) RW Pearcy, JR Ehleringer, HA Mooney, PW Rundel, pp. 75–96, Chapman and Hall, London

19) Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem., 68, 252–262

20)Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In Soil Enzymes, (Ed.) RG Burns, pp. 295–340, Academic Press, London

21) Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem., 58, 216–234

22)Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–2365

23) Cezairliyan B, Ausubel FM (2017) Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl. Acad. Sci. USA, 114, E7796–E7802

24)Chapuis-Lardy L, Brossard M, Quiquampoix H (2001) Assessing organic phosphorus status of Cerrado oxisols (Brazil) using 31P-NMR spectroscopy and phosphomonoesterase activity measurement. Can. J. Soil Sci., 81, 591–601

25) Chen H, Li D, Zhao J, Xiao K, Wang K (2018) Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agric. Ecosyst. Environ., 252, 126–131

26) Chróst RJ (1990) Microbial ectoenzymes in aquatic environments. In Aquatic Microbial Ecology: Biochemical and Molecular Approaches, (Ed.) J Overbeck, RJ Chróst, pp. 47–78, Springer-Verlag, New York

27) Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Microbial Enzymes in Aquatic Environments, (Ed.) RJ Chróst, pp. 29–59, Springer, New York

28) Colvan SR, Syers JK, O’Donnell AG (2001) Effect of long-term fertilizer use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol. Fertil. Soils, 34, 258–263

29) Dunlop PC, Roon RJ (1975) L-asparaginase of Saccharomyces cerevisiae: an extracellular enzyme. J. Bacteriol., 122, 1017– 1024.

30)Dunlop PC, Meyer GM, Roon RJ (1980) Reactions of asparaginase II of Saccharomyces cerevisiae. J. Biol. Chem., 255, 1542–1546

31) Ekenler M, Tabatabai MA (2004) Arylamidase and amidohydrolases in soils as affected by liming and tillage systems. Soil Till. Res., 77, 157–168

32) Fanin N, Moorhead D, Bertrand I (2016) Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient. Biogeochemistry, 129, 21–36

33) Fatemi FR, Fernandez IJ, Simon KS, Dail DB (2016) Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem., 98, 171–179

34)Fisher SH, Sonenshein AL (1991) Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu. Rev. Microbiol., 45, 107–135

35) Fisher SH, Wray LV Jr (2002) Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase. J. Bacteriol., 184, 2148–2154

36) Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE (2015) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol. Biochem., 88, 137–147

37) Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE (2017) Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl. Soil Ecol., 111, 48–56

38) Fujita K, Kunito T, Moro H, Toda H, Otsuka S, Nagaoka K (2017) Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils. Biogeochemistry, 136, 325–339

39) Fujita K, Kunito T, Matsushita J, Nakamura K, Moro H, Yoshida S, Toda H, Otsuka S, Nagaoka K (2018) Nitrogen supply rate regulates microbial resource allocation for synthesis of nitrogenacquiring enzymes. PLoS ONE, 13, e0202086

40)Fujita K, Miyabara Y, Kunito T (2019) Microbial biomass and ecoenzymatic stoichiometries vary in response to nutrient availability in an arable soil. Eur. J. Soil Biol., 91, 1–8

41) Geisseler D, Horwath WR (2008) Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol. Biochem., 40, 3040–3048

42)Geisseler D, Horwath WR (2009) Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia, 53, 87–98

43) Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In Nucleic Acids and Proteins in Soil, (Ed.) P Nannipieri, K Smalla, pp. 257–311, Springer-Verlag, Berlin

44)Golden KJ, Bernlohr RW (1985) Nitrogen catabolite repression of the L-asparaginase of Bacillus licheniformis. J. Bacteriol., 164, 938–940.

45) Harrison AF (1983) Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biol. Biochem., 15, 93–99

46)早野恒一(1997)土の酵素,In 土の環境圏,岩田進午・ 喜田大三 監修,pp. 229–233,フジ・テクノシステム, 東京

47)早野恒一・都留信也・金沢晋二郎(1981)土壌酵素 2. 存在状態とその起原,化学と生物,19, 330–334

48)Hedley MJ (2008) Techniques for assessing nutrient bioavailability in soils: current and future issues. In Chemical Bioavailability in Terrestrial Environments (Developments in Soil Science Vol. 32), (Ed.) R Naidu, pp. 283–327, Elsevier, Amsterdam

49) Hedley HJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J., 46, 970–976

50)Heilmann E, Leinweber P, Ollesch G, Meißner R (2005) Spatial variability of sequentially extracted P fractions in a silty loam. J. Plant Nutr. Soil Sci., 168, 307–315

51) Hill BH, Elonen CM, Jicha TM, Bolgrien DW, Moffett MF (2010) Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin. Biogeochemistry, 97, 195–209

52) Howard JB, Carpenter FH (1972) L-asparaginase from Erwinia carotovora. J. Biol. Chem., 247, 1020–1030

53) Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem., 101, 32–43

54)金沢晋二郎(1994)土壌酵素,In 土壌生化学,pp. 52–72, 朝倉書店,東京

55)金沢晋二郎・早野恒一・都留信也(1981)土壌酵素 1. 土壌の炭素・窒素・燐循環.化学と生物,19, 235–242

56) Keyhani NO, Roseman S (1999) Phyiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta, 1473, 108–122

57)國頭 恭・唐澤敏彦(2019)土壌酵素と土壌の質,In 実践土壌学シリーズ 3 土壌生化学,犬伏和之 編, pp. 117–127,朝倉書店,東京

58) Kunito T, Tsunekawa M, Yoshida S, Park H-D, Toda H, Nagaoka K, Saeki K (2012a) Soil properties affecting phosphorus forms and phosphatase activities in Japanese forest soils: Soil microorganisms may be limited by phosphorus. Soil Sci., 177, 39–46

59) Kunito T, Tobitani T, Moro H, Toda H (2012b) Phosphorus limitation in microorganisms leads to high phosphomonoesterase activity in acid forest soils. Pedobiologia, 55, 263–270

60)Kunito T, Isomura I, Sumi H, Park H-D, Toda H, Otsuka S, Nagaoka K, Saeki K, Senoo K (2016) Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biol. Biochem., 97, 23–30

61) Kunito T, Shiroma T, Moro H, Sumi H (2018) Annual variation in soil enzyme activity in a paddy field: soil temperature and nutrient availability are important for controlling enzyme activities. Appl. Environ. Soil Sci., 2018, 4093219

62) Lidbury IDEA, Fraser TD, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Wellington EMH (2017) The ‘known’ genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. MicrobiologyOpen, 6, e474

63) Margalef O, Sardans J, Fernández-Martínez M, MolownyHoras R, Janssens IA, Ciais P, Goll D, Richter A, Obersteiner M, Asensio D, Peñuelas J. (2017) Global patterns of phosphatase activity in natural soils. Sci. Rep., 7, 1337

64)Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol., 193, 696–704

65) McCarty GW, Shogren DR, Bremner JM (1992) Regulation of urease production in soil by microbial assimilation of nitrogen. Biol. Fertil. Soils, 12, 261–264

66)McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26, 267–286.

67) Mise K, Fujita K, Kunito T, Senoo K, Otsuka S (2018) Phosphorusmineralizing communities reflect the nutrient-rich characteristics in Japanese arable Andisols. Microbes Environ., 33, 282– 289

68)Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev., 53, 85–108

69) Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol. Rev., 59, 451–480

70) Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013) Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front. Microbiol., 4, 223

71) Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016) Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem., 93, 1–7

72) Mori T, Imai N, Yokoyama D, Kitayama K (2018) Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen-acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia. Soil Sci. Plant Nutr., 64, 554–557

73) Moro H, Kunito T, Saito T, Yaguchi N, Sato T (2014) Soil microorganisms are less susceptible than crop plants to potassium deficiency. Arch. Agron. Soil Sci., 60, 1807–1813

74) Moro H, Kunito T, Sato T (2015) Assessment of phosphorus bioavailability in cultivated Andisols from a long-term fertilization field experiment using chemical extractions and soil enzyme activities. Arch. Agron. Soil Sci., 61, 1107–1123

75) Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, Soil Biology 26, (Ed.) EK Bünemann, A Oberson, E Frossard, pp. 215–243, Springer-Verlag, Berlin

76) Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils, 48, 743–762

77) Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils, 54, 11–19

78) Neal AL, Blackwell M, Akkari E, Guyomar C, Clark I, Hirsch PR (2018) Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific acid-phosphatase gene diversity and abundance. Plant Soil, 427, 175–189

79) North MJ (1982) Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol. Rev., 46, 308–340

80)Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175–190

81) Pathan SI, Ceccherini MT, Hansen MA, Giagnoni L, Ascher J, Arenella M, Sørensen SJ, Pietramellara G, Nannipieri P, Renella G (2015) Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol. Fertil. Soils, 51, 995–1004

82) Pócsi I, Pusztahelyi T, Bogáti MS, Szentirmai A (1993) The formation of N-acetyl-β-D-hexosaminidase is repressed by glucose in Penicillium chrysogenum. J. Basic Microbiol., 33, 259–267

83) Qin S, Hu C, Wang Y, Li X, He X (2010) Tillage effects on intracellular and extracellular soil urease activities determined by an improved chloroform fumigation method. Soil Sci., 175, 568–572

84)Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl. Environ. Microbiol., 81, 7281–7289

85) Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK (2017) Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol. Ecol., 93, fiw212

86) Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma, 145, 216–221

87) Renz TE, Neufeldt H, Ayarza MA, da Silva JE, Zech W (1999) Acid monophosphatase: an indicator of phosphorus mineralization or of microbial activity? A case study from the Brazilian Cerrados. In Sustainable Land Management for the Oxisols of the Latin American Savannas: Dynamics of Soil Organic Matter and Indicators of Soil Quality, (Ed.) R Thomas, MA Ayarza, pp. 173–186, Centro Internacional de Agricultura Tropical, Cali, Colombia

88) Rosinger C, Rousk J, Sandén H (2019) Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?—A critical assessment in two subtropical soils. Soil Biol. Biochem., 128, 115–126

89) Rossolini GM, Schippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell. Mol. Life Sci., 54, 833–850

90)Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phophatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr., 54, 62–71

91) Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol., 6, 402

92)Satti P, Mazzarino MJ, Roselli L, Crego P (2007) Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina. Geoderma, 139, 229–240

93) Schimel J, Becerra CA, Blankinship J (2017) Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol. Biochem., 114, 5–11

94)Sims GK, Wander MM (2002) Proteolytic activity under nitrogen or sulfur limitation. Appl. Soil Ecol., 19, 217–221

95) Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol. Fertil. Soils, 17, 69–74

96) Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst., 43, 313–343

97) Sinsabaugh RL, Linkins AE (1993) Statistical modeling of litter decomposition from integrated cellulase activity. Ecology, 74, 1594–1597

98) Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem., 26, 1305–1311

99) Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 74, 1586–1593

100) Sinsabaugh RL, Carreiro MM, Alvarez S (2002) Enzyme and microbial dynamics of litter decomposition. In Enzymes in the Environment: Activity, Ecology, and Applications, (Ed.) RG Burns, RP Dick, pp. 249–265, Marcel Dekker, New York

101) Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol. Lett., 11, 1252–1264

102) Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795–798

103) Sinsabaugh RL, Follstad Shaw JJ, Hill BH, Elonen CM (2012) Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils. Biogeochemistry, 111, 455–467

104) Smith MS, Rice CW, Paul EA (1989) Metabolism of labeled organic nitrogen in soil: regulation by inorganic nitrogen. Soil Sci. Soc. Am. J., 53, 768–773

105) Speir TW, Cowling JC (1991) Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices. Biol. Fertil. Soils, 12, 189–194

106) Spohn M, Kuzyakov Y (2013a) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol. Biochem., 61, 69–75

107) Spohn M, Kuzyakov Y (2013b) Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation—Coupling soil zymography with 14C imaging. Soil Biol. Biochem., 67, 106–113

108) Steenbergh AK, Bodelier PLE, Hoogveld HL, Slomp CP, Laanbroek HJ (2011) Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient. Limnol. Oceanogr., 56, 2018–2026

109) Sullivan BW, Alvarez-Clare S, Castle SC, Porder S, Reed SC, Schreeg L, Townsend AR, Cleveland CC (2014) Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology, 95, 668–681

110) Tabatabai MA (1994) Soil enzymes. In Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties, (Ed.) RW Weaver, S Angle, P Bottomley, D Bezdicek, S Smith, MA Tabatabai, A Wollum, pp. 775–833, Soil Science Society of America, Madison, Wisconsin

111) Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1, 301–307

112) Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils, 49, 661–672

113) Trasar-Cepeda MC, Gil-Sotres F (1987) Phosphatase activity in acid high organic matter soils in Galicia (NW Spain). Soil Biol. Biochem., 19, 281–287

114) Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev., 79, 243–262

115) Turner BL, Haygarth PM (2005) Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci. Total Environ., 344, 27–36

116) Turner BL, Wright SJ (2014) The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry, 117, 115–130

117) Vranova V, Rejsek K, Formanek P (2013) Proteolytic activity in soil: A review. Appl. Soil Ecol., 70, 23–32.

118) Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl., 14, 1172–1177

119) Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In Methods of Soil Enzymology, (Ed.) RP Dick, pp. 35–55, Soil Science Society of America, Madison

120) Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol. Biochem., 40, 2098–2106

121) Weedon JT, Aerts R, Kowalchuk GA, van Bodegom PM (2011) Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils. Biochem. Soc. Trans., 39, 309–314

122) Whooley MA, O’Callaghan JA, McLoughlin AJ (1983) Effect of substrate on the regulation of exoprotease production by Pseudomonas aerginosa ATCC 10145. J. Gen. Microbiol., 129, 981–988

123) Wiame J-M, Grenson M, Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol., 26, 1–88

124)Wright AL, Reddy KR (2001) Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Sci. Soc. Am. J., 65, 588–595

125) Xu Z, Yu G, Zhang X, He N, Wang Q, Wang S, Wang R, Zhao N, Jia Y, Wang C (2017) Soil enzyme activity and stoichiometry along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem., 104, 152–163

126) Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, Tfaily MM, Paša-Tolić L, Hazen TC, Turner BL, Mayes MA, Pan C (2018) Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol., 2, 499–509

127) Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr., 85, 133–155

128) Zhou Z, Wang C, Jin Y (2017) Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biol. Fertil. Soils, 53, 397–406

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る