リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Growth of Protoplanets via the Accretion of Small Bodies in Disks Perturbed by the Planetary Gravity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Growth of Protoplanets via the Accretion of Small Bodies in Disks Perturbed by the Planetary Gravity

Okamura, Tatsuya Kobayashi, Hiroshi 名古屋大学

2021.08.04

概要

Planets grow via the collisional accretion of small bodies in a protoplanetary disk. Such small bodies feel strong gas drag, and their orbits are significantly affected by the gas flow and atmospheric structure around the planet. We investigate the gas flow in the protoplanetary disk perturbed by the gravity of the planet by 3D hydrodynamical simulation. We then calculate the orbital evolutions of particles in the gas structure obtained from the hydrodynamical simulation. Based on the orbital calculations, we obtain the collision rate between the planet and centimeter-to-kilometer-sized particles. Our results show that meter-sized or larger particles effectively collide with the planet owing to the atmospheric gas drag, which significantly enhances the collision rate. On the other hand, the gas flow plays an important role for smaller particles. Finally, considering the effects of the atmosphere and gas flow, we derive the new analytic formula for the collision rate, which is in good agreement with our simulations. We estimate the growth timescale and accretion efficiency of drifting bodies for the formation of a gas giant solid core using the formula. We find that the accretion of sub-kilometer-sized bodies achieves a short growth timescale (∼0.05 Myr) and a high accretion efficiency (∼1) for the core formation at 5 au in the minimum-mass solar nebula model.

この論文で使われている画像

参考文献

Adachi, I., Hayashi, C., & Nakazawa, K. 1976, PThPh, 56, 1756

Béthune, W., & Rafikov, R. R. 2019, MNRAS, 488, 2365

Chambers, J. E. 2006, ApJL, 652, L133

Chapman, S., & Cowling, T. G. 1970, The Mathematical Theory of Non-Conduction and Diffusion in Gases (Cambridge: Cambridge Univ. Press)

Chrenko, O., & Lambrechts, M. 2019, A&A, 626, A109

Cimerman, N. P., Kuiper, R., & Ormel, C. W. 2017, MNRAS, 471, 4662

Eshagh, M. 2005, JESP, 31, 1

Fehlberg, E. 1969, NASA Technical Report R-315, NASA

Fung, J., Artymowicz, P., & Wu, Y. 2015, ApJ, 811, 101

Fung, J., Zhu, Z., & Chiang, E. 2019, ApJ, 887, 152

Gammie, C. F. 2001, ApJ, 553, 174

Hayashi, C., Nakazawa, K., & Nakagawa, Y. 1985, in Protostars and Planets II, ed. D. C. Black & M. S. Matthews (Tuscon, AZ: Univ. Arizona Press), 1100

Homma, T., Ohtsuki, K., Maeda, N., et al. 2020, ApJ, 903, 98

Ida, S., & Makino, J. 1992, Icar, 96, 107

Ida, S., & Nakazawa, K. 1989, A&A, 224, 303

Inaba, S., & Ikoma, M. 2003, A&A, 410, 711

Inaba, S., Tanaka, H., Nakazawa, K., Wetherill, G. W., & Kokubo, E. 2001, Icar, 149, 235

Inaba, S., Wetherill, G. W., & Ikoma, M. 2003, Icar, 166, 46

Kobayashi, H., & Tanaka, H. 2018, ApJ, 862, 127

Kobayashi, H., Tanaka, H., & Krivov, A. V. 2011, ApJ, 738, 35

Kobayashi, H., Tanaka, H., Krivov, A. V., & Inaba, S. 2010, Icar, 209, 836

Kokubo, E., & Ida, S. 2002, ApJ, 581, 666

Kurokawa, H., & Tanigawa, T. 2018, MNRAS, 479, 635

Kuwahara, A., & Kurokawa, H. 2020a, A&A, 633, A81

Kuwahara, A., & Kurokawa, H. 2020b, A&A, 643, A21

Kuwahara, A., Kurokawa, H., & Ida, S. 2019, A&A, 623, A179

Lambrechts, M., & Johansen, A. 2012, A&A, 544, A32

Lambrechts, M., & Lega, E. 2017, A&A, 606, A146

Mizuno, H., Nakazawa, K., & Hayashi, C. 1978, PThPh, 60, 699

Moldenhauer, T. W., Kuiper, R., Kley, W., & Ormel, C. W. 2021, A&A, 646, L11

Ohtsuki, K., Stewart, G. R., & Ida, S. 2002, Icar, 155, 436

Ormel, C. W. 2013, MNRAS, 428, 3526

Ormel, C. W. 2017, in The Emerging Paradigm of Pebble Accretion, ed. M. Pessah & O. Gressel, Vol. 445 (Berlin: Springer), 197

Ormel, C. W., & Klahr, H. H. 2010, A&A, 520, A43

Ormel, C. W., Kuiper, R., & Shi, J.-M. 2015a, MNRAS, 446, 1026

Ormel, C. W., Shi, J.-M., & Kuiper, R. 2015b, MNRAS, 447, 3512

Popovas, A., Nordlund, Å., & Ramsey, J. P. 2019, MNRAS, 482, L107

Popovas, A., Nordlund, Å., Ramsey, J. P., & Ormel, C. W. 2018, MNRAS, 479, 5136

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 500, 33

Stone, J. M., Tomida, K., White, C. J., & Felker, K. G. 2020, ApJS, 249, 4

Tanigawa, T., Maruta, A., & Machida, M. N. 2014, ApJ, 784, 109

Visser, R. G., & Ormel, C. W. 2016, A&A, 586, A66

Weidenschilling, S. J. 1977a, Ap&SS, 51, 153

Weidenschilling, S. J. 1977b, MNRAS, 180, 57

White, C. J., Stone, J. M., & Gammie, C. F. 2016, ApJS, 225, 22

Youdin, A. N., & Lithwick, Y. 2007, Icar, 192, 588

参考文献をもっと見る