リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Early stages of aqueous alteration in the primitive hydrous asteroids inferred from mineralogical and petrological observation of pristine hydrous carbonaceous chondrites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Early stages of aqueous alteration in the primitive hydrous asteroids inferred from mineralogical and petrological observation of pristine hydrous carbonaceous chondrites

Enokido Yuma 東北大学

2021.09.24

概要

Transmission electron microscope (TEM) observation of the least altered grains from Paris CM 2.9 chondrite clarified the formation process and sequence of various minerals during incipient aqueous alteration. (1) Primary silicates and amorphous silicates in matrix were not altered to serpentine. The crystallinity of the silicates is heterogeneous. (2) Calcites are the first phase to precipitate from fluids. Some calcites precipitated with sulfates (bassanite and Na-sulfates). (3) In the periphery of calcites, Fe-pure tochilinite, serpentine, and minor TCIs (or TCIs-like poor-crystalline phase) formed together. There are abundant empty spaces in it. These three minerals exhibit stacked structure and tochilinite is the first phase formed among these minerals.

These observation indicates that there was the initial large fluid in the periphery of the calcite and it caused the incipient aqueous alteration; that is, slight reaction with nearby matrix amorphous silicates and precipitation of calcite and its peripheral minerals. The absence of serpentine in matrix indicates that the aqueous alteration occurred at almost 0 ° C for very short durations. The sequence of the minerals in periphery of calcites reflects the changes of fluid conditions. The initial fluids supplied several cations from nearby matrix minerals and carbon from CO2 ice. The CO2-bearing alkaline fluid precipitated calcites. Some fluids are sulfur-rich precipitated sulfates with calcites. The further reaction of the fluid caused reducing condition of the fluid and tochilinite precipitated. The consumption of Fe and S and further reaction of the fluid with matrix minerals changed the fluid composition into Mg and Si-rich resulting in the formation of TCIs and serpentine at the surface of tochilinites. The short duration of fluid reaction with matrix materials is due to the exhaustion of fluids. The exhaustion was caused by (1) extremely low abundance of fluids in the Paris parent body and/either, (2) sublimation of ice which were formed by re-freezing of fluids with decreasing temperature of the parent body. Therefore, it is suggested that the Paris chondrite came from the surface of the hydrous parent body and the aqueous alteration in it is unequilibrated.

参考文献

Abe T., Tsukamoto K. and Sunagawa I. 1991. Nucleation, Growth and Stability of CaAl2Si2O8 Polymorphs. Physics & Chemistry of Minerals 17:473–484.

Abe T. and Sunagawa I., 1995. Hexagonal CaAl2Si2Os in a high temperature solution; metastable crystallization and transformation to anorthite. Mineralogical Journal 17:257–281.

Borglum B. P., Bukowski J. M., Young J. F. and Buchanan R. C. 1993. Low-temperature synthesis of hexagonal anorthite via hydrothermal processing. Journal of the American Ceramic Society 76:1354–1356.

Bonal L., Quirico E., Bourot-Denise M. and Montagnac G. 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta 70:1849–1863.

Brearley A. J. 1997. Disordered Biopyriboles, Amphibole, and Talc in the Allende Meteorite: Products of Nebular or Parent Body Aqueous Alteration? Science 276:1103–1105.

Brearley A. J., Fagan T. J., Washio M. and MacPherson G. J. 2014. FIB-TEM characterization of dmisteinbergite with intergrown biopyriboles in Allende Ca-Al-rich inclusions: evidence for alteration in the presence of aqueous fluid (abstract #2287). 45th Lunar & Planetary Science Conference. CD-ROM.

Brearley A. J. and Krot A. N. 2013. Metasomatism in the early solar system: The record from chondritic meteorites. In Metasomatism and the chemical transformation of rock, edited by Daniel E. HarlovHåkon Austrheim. Springer: Publisher. pp. 659–789.

Davis G. L. and Tuttle O. F. 1952. Two new crystalline phases of the anorthite composition, CaO Al2O3 2SiO2. American Journal of Science Bowen 250:107–114.

Downs R. T. 2006. The RRUFF Project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals (abstract #O03-13). 19th General Meeting of the International Mineralogical Association.

Enokido Y., Fagan T. and Aragane H. 2014. Mineral alteration of a Type B CAI from the reduced CV3 chondrite, Efremovka (abstract). 5th Symposium on Polar Science.

Fintor K., Park C., Nagy S., Pa ́l-Molna ́r E. and Krot A. N. 2014. Hydrothermal origin of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite. Meteoritics & Planetary Science 49:812–823.

Grossmann L. 1975. Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta 39:433–453.

Harlov D. and Austrheim H. 2013. Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. Springer: Publisher.

Hashimoto A. and Grossman L. 1987. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochimica et Cosmochimica Acta 51, 1685– 1704.

Hong S.-H., Young J. F., Yu P. and Kirkpatrick R. J. 1999. Synthesis of anorthite by the Pechini process and structural investigation of the hexagonal phase. Journal of Materials Research 14:1828–1833.

Ichimura S., Seto Y. and Tomeoka K. 2017. Nepheline formation in chondrite parent bodies: Verification through experiments. Geochimica et Cosmochimica Acta 210:114–131.

Jacob D., Stodolna J., Lerouxi H., Langenhorst F. and Hiydellier F. 2009. Pyroxenes microstructure in comet 81P/Wild 2 terminal Stardust particles. Meteoritics & Planetary Science 44:1475–1488.

Krot A. N., Nagashima K., Fintor K. and Pa ́l-Molna ́r E. 2019. Evidence for oxygen- isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rock interaction on the CV parent asteroid. Geochimica et Cosmochimica Acta 246:419– 435.

Krot A. N., Pataev M. I. and Bland P. A. 2004. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism. Antarctic Meteorite Research 17: 153-171.

Krot, A.N., Meibom, A. and Keil, K. 2000a. A clastof Bali-like oxidized CV- material in the reduced CV chondrite breccia Vigarano. Meteoritics & Planetary Science 35:817-827.

Krot A. N., Petaev M. I., Zolensky M. E., Keil K., Scott E. R. D. and Nakamura K. 1998a. Seconday calcium-iron-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteoritics & Planetary Science 33:623–645.

Krot A. N., Petaev M. I., Scott E. R. D., Choi B.-G., Zolensky M. E. and Keil K. 1998b. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science. 33:1065–1085.

Krot A. N., Scott E. R.D. and Zolensky M. E. 1995. Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science 30:748–775.

Krot, A.N. and Todd, C.S. (+332): Metal-carbide-magnetite-fayalite association in a Bali- like clast in the reduced CV chondrite breccia Vigarano (abstract). Meteoritics & Planetary Science 34: A88-89.

Ma C., Krot A. N. and Bizzarro M. 2013. Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. Amrican Mineralogist 98:1368–1371.

MacPherson, G.J., Wark, D.A., Armstrong, J.T., 1988. Primitive material surviving in chondrites: refractory inclusions. In: Kerridge, J.F., Matthews, M.S. (Eds.), Meteorites and the Early Solar System. University of Arizona Press, Tucson, 746–807.

Mason B. and Taylor S. R. 1982. Inclusions in the Allende Meteorite. Smithsonian Contributions to the Earth Sciences 25:1–30.

McSween, H.Y. 1977. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimca et Cosmochimca Acta 41: 1777-1790.

Nestola F., Mittempergher S., Di Toro G., Zorzi F. and Pedron D. 2010. Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte: A tool to constrain the thermal history of a seismic event. American Mineralogist 95:405–409.

Nomura K. andMiyamoto M. 1998. Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: Implication for aqueous alteration in parent asteroids. Geochimica et Cosmochimica Acta 62:3575–3588.

Pomies M. P., Menu M. and Vignaud C. 1999. Tem observations of goethite dehydration: application to archaeological samples. Journal of the Europian Ceramic Society 19:1605– 1614.

Scott E.R.D., Keil K. and Stöffler D. 1992. Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta 56:4281–4293.

Simon S. B., Krot A. N. and Nagashima K. 2019. Oxygen and Al-Mg isotopic compositions of grossite-bearing refractory inclusions from CO3 chondrites. Meteoritics & Planetary Science 54:1362–1378.

Sokol E., Volkova N., Lepezin G. 1998. Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil heaps of the Chelyabinsk coal basin, Russia. European Journal of mineralogy 10:1003–1014.

Stöffler D., Keil K., Scott E. R.D. 1991. Shock metamorphism of ordinary Chondrite meteorites. Geochimica et Cosmochimica Acta 55:3845–3867.

Valentina L., Agnes M., Alessandro E., Philippe D., Sami M. 2015. Hydrogrossular, Ca3Al2(SiO4)3x(H4O4)x: An Ab initio Investigation of its Structural and Energetic Properties. American Mineralogist 100:2637–2649.

Weisberg, M.K., Prinz, M., Clayton, R.N. and Mayeda, T.K. 1997. CV- chondrites; three subgroups, not two (abstract). Meteoritics & Planetary Science 32: 138–139.

Zolensky M., Barrett R., Browning R. 1993. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta 57:3123– 3148.

Zolotov M. Y., Mironenko M. V., Shock E. L. 2006. Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics & Planetary Science 41:1775– 1796.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る