リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells

Takata, Shota Mise, Kazuyuki Takano, Yoshitaka Kaido, Masanori 京都大学 DOI:10.1016/j.virol.2022.01.015

2022.03

概要

New evidences are emerging to support the importance of viral replication complexes (VRCs) in not only viral replication, but also viral cell-to-cell movement. Currently, how VRCs grow in size and colocalize with viral movement proteins (MPs) remains unclear. Herein, we performed live-cell imaging of red clover necrotic mosaic virus (RCNMV) dsRNA by using reporter B2-GFP plants. Tiny granules of dsRNA were formed along the endoplasmic reticulum (ER) at an early stage of infection. Importantly, the colocalization of the dsRNA granules with the virus-encoded p27 replication protein showed that these structures are components of VRCs. These granules moved throughout the cytoplasm, driven by the acto–myosin system, and coalesced with each other to form larger aggregates; the MPs were not associated with these processes. Notably, the MPs colocalized preferentially with large dsRNA aggregates, rather than with tiny dsRNA granules, suggesting that the increase in the size of VRCs promotes their colocalization with MPs.

この論文で使われている画像

参考文献

Alers-Velazquez, R., Jacques, S., Muller, C., Boldt, J., Schoelz, J., Leisner, S., 2021. Cauliflower mosaic virus P6 inclusion body formation: a dynamic and intricate process. Virology 553, 9–22.

Alberti, S., Dormann, D., 2019. Liquid-liquid phase separation in disease. Annu. Rev.

Genet. 53, 171–194.

Amari, K., Di Donato, M., Dolja, V.V., Heinlein, M., 2014. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog. 10 (10), e1004448.

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., Seung, H.S., 2017. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33 (15), 2424–2426.

Bamunusinghe, D., Hemenway, C.L., Nelson, R.S., Sanderfoot, A.A., Ye, C.M., Silva, M.A. T., Payton, M., Verchot-Lubicz, J., 2009. Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393 (2), 272–285.

Benitez-Alfonso, Y., Faulkner, C., Ritzenthaler, C., Maule, A.J., 2010. Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant Microbe Interact. 23 (11), 1403–1412.

Brown, S.L., Garrison, D.J., May, J.P., 2021. Phase separation of a plant virus movement protein and cellular factors support virus-host interactions. PLoS Pathog. 17 (9), e1009622.

Carette, J.E., Cuhl, K., Wellink, J., van Kammen, A., 2002. Coalescence of the sites of cowpea mosaic virus RNA replication into a cytopathic structure. J. Virol. 76 (12), 6235–6243.

Chai, M., Wu, X., Liu, J., Fang, Y., Luan, Y., Cui, X., Zhou, X., Wang, A., Cheng, X., 2020.

P3N-PIPO Interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J. Virol. 94 (8) e01898-19.

Christensen, N., Tilsner, J., Bell, K., Hammann, P., Parton, R., Lacomme, C., Oparka, K., 2009. The 5’ Cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic 10 (5), 536–551.

Cui, X., Yaghmaiean, H., Wu, G., Wu, X., Chen, X., Thorn, G., Wang, A., 2017. The C- terminal region of the Turnip mosaic virus P3 protein is essential for viral infection via targeting P3 to the viral replication complex. Virology 510, 147–155.

den Boon, J.A., Ahlquist, P., 2010. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu. Rev. Microbiol. 64, 241–256.

den Boon, J.A., Diaz, A., Ahlquist, P., 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8 (1), 77–85.

Diaz, A., Zhang, J., Ollwerther, A., Wang, X., Ahlquist, P., 2015. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function. PLoS Pathog. 11 (3), e1004742.

Diaz, A., Wang, X., Ahlquist, P., 2010. Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc. Natl. Acad. Sci. U. S. A 107 (37), 16291–16296.

Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S.A., Lucas, W.J., 1993. Cell-to- cell Trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5 (12), 1783–1794.

Guseva, S., Milles, S., Jensen, M.R., Salvi, N., Kleman, J.P., Maurin, D., Ruigrok, R.W.H., Blackledge, M., 2020. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci. Adv. 6 (14) eaaz7095.

Heinlein, M., Padgett, H.S., Gens, J.S., Pickard, B.G., Casper, S.J., Epel, B.L., Beachy, R. N., 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10 (7), 1107–1120.

Heinlein, M., 2015. Plant virus replication and movement. Virology 479–480, 657–671.

Heinrich, B.S., Maliga, Z., Stein, D.A., Hyman, A.A., Whelan, S.P.J., 2018. Phase transitions drive the formation of vesicular stomatitis virus replication compartments. mBio 9 (5) e022290-17.

Hyman, A.A., Weber, C.A., Jülicher, F., 2014. Liquid-liquid phase separation in biology.

Annu. Rev. Cell Dev. Biol. 30, 39–58.

Hyodo, K., Hashimoto, K., Kuchitsu, K., Suzuki, N., Okuno, T., 2017. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl. Acad. Sci. U. S. A 114 (7), E1282–E1290.

Hyodo, K., Mine, A., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H., Okuno, T., 2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant. RNA virus 87 (1), 163–176.

Hyodo, K., Okuno, T., 2014. Host factors used by positive-strand RNA plant viruses for genome replication. J. Gen. Plant Pathol. 80, 123–135.

Hyodo, K., Okuno, T., 2016. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr. Opin. Virol. 17, 11–18.

Hyodo, K., Okuno, T., 2020. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv. Virus Res. 107, 37–86.

Hyodo, K., Suzuki, N., Okuno, T., 2019. Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. New Phytol. 221 (2), 935–945.

Hyodo, K., Taniguchi, T., Manabe, Y., Kaido, M., Mise, K., Sugawara, T., Taniguchi, H., Okuno, T., 2015. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus. PLoS Pathog. 11 (5), e1004909.

Ishikawa, K., Miura, C., Maejima, K., Komatsu, K., Hashimoto, M., Tomomitsu, T., Fukuoka, M., Yusa, A., Yamaji, Y., Namba, S., 2015. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming. J. Virol. 89 (1), 480–491.

Jiang, Z., Zhang, K., Li, Z., Li, Z., Yang, M., Jin, X., Cao, Q., Wang, X., Yue, N., Li, D., Zhang, Y., 2020. The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes. PLoS Pathog. 16 (7), e1008709.

Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K., Okuno, T., 2014. GAPDH-A recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog. 10 (11), e1004505.

Kaido, M., Funatsu, N., Tsuno, Y., Mise, K., Okuno, T., 2011. Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 413 (2), 205–215.

Kaido, M., Tsuno, Y., Mise, K., Okuno, T., 2009. Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology 395 (2), 232–242.

Kumar, G., Dasgupta, I., 2021. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms 9 (4), 695.

Kusumanegara, K., Mine, A., Hyodo, K., Kaido, M., Mise, K., Okuno, T., 2012. Identification of domains in p27 auxiliary replicase protein essential for its association with the endoplasmic reticulum membranes in Red clover necrotic mosaic virus. Virology 433 (1), 131–141.

Lalibert´e, J.-F., Sanfaçon, H., 2010. Cellular remodeling during plant virus infection.

Annu. Rev. Phytopathol. 48, 69–91.

Lalibert´e, J.-F., Zheng, H., 2014. Viral manipulation of plant host membranes. Ann. Rev.

Virol. 1 (1), 237–259.

Levy, A., Tilsner, J., 2020. Creating contacts between replication and movement at plasmodesmata-A role for membrane contact sites in plant virus infections? Front. Plant Sci. 11, 862.

Levy, A., Zheng, J.Y., Lazarowitz, S.G., 2015. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25, 2018–2025.

Linnik, O., Liesche, J., Tilsner, J., Oparka, K., 2013. Unraveling the structure of viral replication complexes at super-resolution. Front. Plant Sci. 4, 6.

Liu, J., Blancaflor, E.B., Nelson, R.S., 2005. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Phyiol 138 (4), 1853–1865.

Lucas, W.J., 2006. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344 (1), 169–184.

Luo, M., Terrell, J.R., Mcmanus, S.A., 2020. Nucleocapsid structure of negative strand RNA virus. Viruses 12 (8), 835.

Meijering, E., Dzyubachyk, O., Smal, I., 2012. Methods for cell and particle tracking.

Methods Enzymol. 504, 183–200.

Mine, A., Okuno, T., 2012. Composition of plant virus RNA replicase complexes. Curr.

Opin. Virol. 2 (6), 669–675.

Mizumoto, H., Hikichi, Y., Okuno, T., 2002. The 3’-untranslated region of RNA1 as a primary determinant of temperature sensitivity of red clover necrotic mosaic virus Canadian strain. Virology 293 (2), 320–327.

Mizumoto, H., Tatsuta, M., Kaido, M., Mise, K., Okuno, T., 2003. Cap-independent translational enhancement by the 3’ untranslated region of red clover necrotic mosaic virus RNA1. J. Virol. 77 (22), 12113–12121.

Monsion, B., Incarbone, M., Hleibieh, K., Poignavent, V., Ghannam, A., Dunoyer, P., Daeffler, L., Tilsner, J., Ritzenthaler, C., 2018. Efficient detection of long dsRNA in vitro and in vivo using the dsRNA binding domain from FHV B2 protein. Front. Plant Sci. 9, 1–16.

Mori, M., Mise, K., Kobayashi, K., Okuno, T., Furusawa, I., 1991. Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S RNA promoter. J. Gen. Virol. 72, 243–246.

Nagy, P.D., Feng, Z., 2021. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Curr. Opin. Virol. 48, 30–41.

Nikolic, J., Bars, R.L., Lama, Z., Scrima, N., Lagaudri`ere-Gesbert, C., Gaudin, Y.,

Blondel, D., 2017. Negri bodies are viral factories with properties of liquid organelles. Nat. Commun. 8 (1), 58.

Reagan, B.C., Burch-Smith, T.M., 2020. Viruses reveal the secrets of plasmodesmal cell biology. Mol. Plant Microbe Interact. 33 (1), 26–39.

Sambade, A., Brandner, K., Hofmann, C., Seemanpillai, M., Mutterer, J., Heinlein, M., 2008. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9 (12), 2073–2088.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676–682.

Schoelz, J.E., Leisner, S., 2017. Setting up shop: the formation and function of the viral factories of Cauliflower mosaic virus. Front. Plant Sci. 8, 1832.

Schwartz, M., Chen, J., Janda, M., Sullivan, M., den Boon, J., Ahlquist, P., 2002.

A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell. 9 (3), 505–514.

Schwartz, M., Chen, J., Lee, W., Janda, M., Ahlquist, P., 2004. Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc. Natl. Acad. Sci. U. S. A 101 (31), 11263–11268.

Sz´ecsi, J., Ding, X.S., Lim, C.O., Bendahmane, M., Cho, M.J., Nelson, R.S., Beachy, R.N.,

1999. Development of tobacco mosaic virus infection sites in Nicotiana benthamiana. Mol. Plant Microbe Interact. 12, 143–152.

Takeda, A., Tsukuda, M., Mizumoto, H., Okamoto, K., Kaido, M., Mise, K., Okuno, T., 2005. A plant RNA virus suppresses RNA silencing through viral RNA replication. EMBO J. 24 (17), 3147–3157.

Tatsuta, M., Mizumoto, H., Kaido, M., Mise, K., Okuno, T., 2005. The red clover necrotic mosaic virus RNA2 trans-activator is also a cis-acting RNA2 replication element.

J. Virol. 79 (2), 978–986.

Tilsner, J., Linnik, O., Louveaux, M., Roberts, I.M., Chapman, S.N., Oparka, K.J., 2013.

Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201 (7), 981–995.

Tilsner, J., Linnik, O., Wright, K.M., Bell, K., Roberts, A.G., Lacomme, C., Cruz, S.S., Oparka, K.J., 2012. The TGB1 movement protein of potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol. 158 (3), 1359–1370.

Tilsner, J., Oparka, K.J., 2012. Missing links? - the connection between replication and movement of plant RNA viruses. Curr. Opin. Virol. 2 (6), 705–711.

Tilsner, J., Taliansky, M.E., Torrance, L., 2014. Plant virus movement. eLS 1–12.

Tremblay, D., Vaewhongs, A.A., Turner, K.A., Sit, T.L., Lommel, S.A., 2005. Cell wall localization of Red clover necrotic mosaic virus movement protein is required for cell-to-cell movement. Virology 333 (1), 10–21.

Turner, K.A., Sit, T.L., Callaway, A.S., Allen, N.S., Lommel, S.A., 2004. Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 320 (2), 276–290.

Waigmann, E., Ueki, S., Trutnyeva, K., Citovsky, V., 2004. The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit. Rev. Plant Sci. 23, 195–250.

Wang, A., 2021. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr. Opin. Virol. 48, 10–16.

Wu, X., Cheng, X., 2020. Intercellular movement of plant RNA viruses: targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 21 (12), 725–736.

Xiong, Z., Kim, K.H., Giesman-Cookmeyer, D., Lommel, S.A., 1993a. The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192 (1), 27–32.

Xiong, Z., Kim, K.H., Kendall, T.L., Lommel, S.A., 1993b. Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro. Virology 193 (1), 213–221.

Xiong, Z., Lommel, S.A., 1989. The complete nucleotide sequence and genome organization of red clover necrotic mosaic virus RNA-1. Virology 171 (2), 543–554.

Xiong, Z., Lommel, S.A., 1991. Red clover necrotic mosaic virus infectious transcripts synthesized in vitro. Virology 182 (1), 388–392.

Yang, X., Li, Y., Wang, A., 2021. Research advances in potyviruses: from the laboratory bench to the field. Annu. Rev. Phytopathol. 59, 1–29.

Zavriev, S.K., Hickey, C.M., Lommel, S.A., 1996. Mapping of the red clover necrotic mosaic virus subgenomic RNA. Virology 216 (2), 407–410.

参考文献をもっと見る