リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「RNA Sequencing of Medusavirus Suggests Remodeling of the Host Nuclear Environment at an Early Infection Stage」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

RNA Sequencing of Medusavirus Suggests Remodeling of the Host Nuclear Environment at an Early Infection Stage

Zhang, Ruixuan Endo, Hisashi Takemura, Masaharu Ogata, Hiroyuki 京都大学 DOI:10.1128/spectrum.00064-21

2021.10

概要

Viruses of the phylum Nucleocytoviricota, or nucleo-cytoplasmic large DNA viruses (NCLDVs), undergo a cytoplasmic or nucleo-cytoplasmic cycle, the latter of which involves both nuclear and cytoplasmic compartments to proceed viral replication. Medusavirus, a recently isolated NCLDV, has a nucleo-cytoplasmic replication cycle in amoebas during which the host nuclear membrane apparently remains intact, a unique feature among amoeba-infecting NCLDVs. The medusavirus genome lacks most transcription genes but encodes a full set of histone genes. To investigate its infection strategy, we performed a time course RNA sequencing (RNA-seq) experiment. All viral genes were transcribed and classified into five temporal expression clusters. The immediate early genes (cluster 1, 42 genes) were mostly (83%) of unknown functions, frequently (95%) associated with a palindromic promoter-like motif, and often (45%) encoded putative nucleus-localized proteins. These results suggest massive reshaping of the host nuclear environment by viral proteins at an early stage of infection. Genes in other expression clusters (clusters 2 to 5) were assigned to various functional categories. The virally encoded core histone genes were in cluster 3, whereas the viral linker histone H1 gene was in cluster 1, suggesting they have distinct roles during the course of the virus infection. The transcriptional profile of the host Acanthamoeba castellanii genes was greatly altered postinfection. Several encystment-related host genes showed increased representation levels at 48 h postinfection, which is consistent with the previously reported amoeba encystment upon medusavirus infection.

この論文で使われている画像

参考文献

1. Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic

JM, Ramus C, Bruley C, Labadie K, Shmakova L, Rivkina E, Couté Y, Abergel

C, Claverie JM. 2015. In-depth study of Mollivirus sibericum, a new 30,000-yold giant virus infecting Acanthamoeba. Proc Natl Acad Sci U S A 112:

E5327–E5335. https://doi.org/10.1073/pnas.1510795112.

2. Yoshikawa G, Blanc-Mathieu R, Song C, Kayama Y, Mochizuki T, Murata K,

Ogata H, Takemura M. 2019. Medusavirus, a novel large DNA virus discovered from hot spring water. J Virol 93:e02130-18.

3. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie J-M. 2011. Distant

Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A 108:17486–17491. https://

doi.org/10.1073/pnas.1110889108.

4. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B,

Suzan M, Claverie JM. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350. https://doi.org/10.1126/science.1101485.

5. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M,

Poirot O, Bertaux L, Bruley C, Couté Y, Rivkina E, Abergel C, Claverie JM.

2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA

viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 111:

4274–4279. https://doi.org/10.1073/pnas.1320670111.

6. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D,

Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic

eukaryotes. Science 341:281–286. https://doi.org/10.1126/science.1239181.

Volume 9 Issue 2 e00064-21

7. Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM,

Kuhn JH. 2020. Global organization and proposed megataxonomy of the

virus world. Microbiol Mol Biol Rev 84:1–33. https://doi.org/10.1128/

MMBR.00061-19.

8. Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. 2019. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of

modern eukaryotes. Proc Natl Acad Sci U S A 116:19585–19592. https://

doi.org/10.1073/pnas.1912006116.

9. Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. 2018.

Taxon richness of “Megaviridae” exceeds those of bacteria and archaea

in the ocean. Microbes Environ 33:162–171. https://doi.org/10.1264/

jsme2.ME17203.

10. Yutin N, Wolf YI, Koonin EV. 2014. Origin of giant viruses from smaller

DNA viruses not from a fourth domain of cellular life. Virology 466–467:

38–52. https://doi.org/10.1016/j.virol.2014.06.032.

11. Moreira D, López-García P. 2015. Evolution of viruses and cells: do we

need a fourth domain of life to explain the origin of eukaryotes? Philos

Trans R Soc Lond B Biol Sci 370:20140327. https://doi.org/10.1098/rstb

.2014.0327.

12. Takemura M. 2020. Medusavirus Ancestor in a proto-eukaryotic cell:

updating the hypothesis for the viral origin of the nucleus. Front Microbiol 11:1–8. https://doi.org/10.3389/fmicb.2020.571831.

13. Bell PJL. 2020. Evidence supporting a viral origin of the eukaryotic nucleus.

Virus Res 289:198168. https://doi.org/10.1016/j.virusres.2020.198168.

MicrobiolSpectrum.asm.org

14

Downloaded from https://journals.asm.org/journal/spectrum on 23 June 2022 by 133.3.201.31.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, XLSX file, 1.8 MB.

SUPPLEMENTAL FILE 2, PDF file, 0.04 MB.

SUPPLEMENTAL FILE 3, PDF file, 1 MB.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

14. Ogata H, Claverie JM. 2007. Unique genes in giant viruses: regular substitution pattern and anomalously short size. Genome Res 17:1353–1361.

https://doi.org/10.1101/gr.6358607.

15. Legendre M, Fabre E, Poirot O, Jeudy S, Lartigue A, Alempic JM, Beucher

L, Philippe N, Bertaux L, Christo-Foroux E, Labadie K, Couté Y, Abergel C,

Claverie JM. 2018. Diversity and evolution of the emerging Pandoraviridae family. Nat Commun 9:2285. https://doi.org/10.1038/s41467-018

-04698-4.

16. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ,

McMahon KD, Konstantinidis KT, Eloe-Fadrosh EA, Kyrpides NC, Woyke

T. 2020. Giant virus diversity and host interactions through global

metagenomics. Nature 578:432–436. https://doi.org/10.1038/s41586

-020-1957-x.

17. Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, de Vargas C,

Sullivan MB, Bowler C, Wincker P, Karp-Boss L, Sunagawa S, Ogata H.

2020. Biogeography of marine giant viruses reveals their interplay with

eukaryotes and ecological functions. Nat Ecol Evol 4:1639–1649. https://

doi.org/10.1038/s41559-020-01288-w.

18. Li Y, Hingamp P, Watai H, Endo H, Yoshida T, Ogata H. 2018. Degenerate

PCR primers to reveal the diversity of giant viruses in coastal waters.

Viruses 10:1–16. https://doi.org/10.3390/v10090496.

19. Yoshida K, Zhang R, Garcia KG, Endo H, Gotoh Y, Hayashi T, Takemura M,

Ogata H. 2021. Draft genome sequence of medusavirus stheno, isolated

from the Tatakai River of Uji, Japan. Microbiol Resour Announc 10:

e01323-20. https://doi.org/10.1128/MRA.01323-20.

20. Rolland C, Andreani J, Sahmi-Bounsiar D, Krupovic M, La Scola B, Levasseur

A. 2021. Clandestinovirus: a giant virus with chromatin proteins and a

potential to manipulate the cell cycle of its host Vermamoeba vermiformis.

Front Microbiol 12:1–13. https://doi.org/10.3389/fmicb.2021.715608.

21. Yaakov LB, Mutsafi Y, Porat Z, Dadosh T, Minsky A. 2019. Kinetics of mimivirus infection stages quantified using image flow cytometry. Cytometry

A 95:534–548. https://doi.org/10.1002/cyto.a.23770.

22. Fabre E, Jeudy S, Santini S, Legendre M, Trauchessec M, Couté Y, Claverie

JM, Abergel C. 2017. Noumeavirus replication relies on a transient remote

control of the host nucleus. Nat Commun 8:15087. https://doi.org/10

.1038/ncomms15087.

23. Silva LKDS, Andrade A, Dornas FP, Rodrigues RAL, Arantes T, Kroon EG,

Bonjardim CA, Abrahaõ JS. 2018. Cedratvirus getuliensis replication cycle:

an in-depth morphological analysis. Sci Rep 8:4000–4011. https://doi.org/

10.1038/s41598-018-22398-3.

24. Souza F, Rodrigues R, Reis E, Lima M, La Scola B, Abrahão J. 2019. In-depth

analysis of the replication cycle of Orpheovirus. Virol J 16:158–111.

https://doi.org/10.1186/s12985-019-1268-8.

25. Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V, Byrne D, Lartigue A,

Lescot M, Bernadac A, Poulain J, Abergel C, Claverie JM. 2010. mRNA

deep sequencing reveals 75 new genes and a complex transcriptional

landscape in Mimivirus. Genome Res 20:664–674. https://doi.org/10

.1101/gr.102582.109.

26. Rodrigues RAL, Louazani AC, Picorelli A, Oliveira GP, Lobo FP, Colson P,

La Scola B, Abrahão JS. 2020. Analysis of a marseillevirus transcriptome

reveals temporal gene expression profile and host transcriptional shift.

Front Microbiol 11:651–617. https://doi.org/10.3389/fmicb.2020.00651.

27. Suhre K, Audic S, Claverie JM. 2005. Mimivirus gene promoters exhibit an

unprecedented conservation among all eukaryotes. Proc Natl Acad Sci

U S A 102:14689–14693. https://doi.org/10.1073/pnas.0506465102.

28. Moniruzzaman M, Gann ER, Wilhelm SW. 2018. Infection by a giant virus

(AaV) induces widespread physiological reprogramming in Aureococcus

anophagefferens CCMP1984: a harmful bloom algae. Front Microbiol 9:

1–16. https://doi.org/10.3389/fmicb.2018.00752.

29. Byrne D, Grzela R, Lartigue A, Audic S, Chenivesse S, Encinas S, Claverie

JM, Abergel C. 2009. The polyadenylation site of mimivirus transcripts

obeys a stringent “hairpin rule”. Genome Res 19:1233–1242. https://doi

.org/10.1101/gr.091561.109.

30. Claverie JM, Abergel C. 2009. Mimivirus and its virophage. Annu Rev

Genet 43:49–66. https://doi.org/10.1146/annurev-genet-102108-134255.

31. Hirukawa Y, Nakato H, Izumi S, Tsuruhara T, Tomino S. 1998. Structure

and expression of a cyst specific protein of Acanthamoeba castellanii. Biochim Biophys Acta Gene Struct Expr 1398:47–56. https://doi.org/10.1016/

S0167-4781(98)00026-8.

32. Moon EK, Chung DI, Hong YC, Kong HH. 2008. Characterization of a serine

proteinase mediating encystation of Acanthamoeba. Eukaryot Cell 7:

1513–1517. https://doi.org/10.1128/EC.00068-08.

33. Moon EK, Hong Y, Chung DI, Kong HH. 2012. Cysteine protease involving

in autophagosomal degradation of mitochondria during encystation of

Volume 9 Issue 2 e00064-21

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Acanthamoeba. Mol Biochem Parasitol 185:121–126. https://doi.org/10

.1016/j.molbiopara.2012.07.008.

Moon EK, Hong Y, Chung DI, Goo YK, Kong HH. 2014. Down-regulation

of cellulose synthase inhibits the formation of endocysts in Acanthamoeba. Korean J Parasitol 52:131–135. https://doi.org/10.3347/kjp

.2014.52.2.131.

Chen L, Orfeo T, Gilmartin G, Bateman E. 2004. Mechanism of cyst specific

protein 21 mRNA induction during Acanthamoeba differentiation. Biochim Biophys Acta 1691:23–31. https://doi.org/10.1016/j.bbamcr.2003.11

.005.

Mallardo M, Leithe E, Schleich S, Roos N, Doglio L, Krijnse Locker J. 2002.

Relationship between vaccinia virus intracellular cores, early mRNAs, and

DNA replication sites. J Virol 76:5167–5183. https://doi.org/10.1128/jvi.76

.10.5167-5183.2002.

Mutsafi Y, Zauberman N, Sabanay I, Minsky A. 2010. Vaccinia-like cytoplasmic replication of the giant mimivirus. Proc Natl Acad Sci U S A 107:

5978–5982. https://doi.org/10.1073/pnas.0912737107.

Blanc G, Mozar M, Agarkova IV, Gurnon JR, Yanai-Balser G, Rowe JM, Xia Y,

Riethoven JJ, Dunigan DD, Van Etten JL. 2014. Deep RNA sequencing

reveals hidden features and dynamics of early gene transcription in Paramecium bursaria chlorella virus 1. PLoS One 9:e90989. https://doi.org/10

.1371/journal.pone.0090989.

De Souza FG, Abrah S, Ara R, Rodrigues L. 2021. Comparative analysis of

transcriptional regulation patterns : understanding the gene expression

profile in Nucleocytoviricota. Pathogens 10:935. https://doi.org/10.3390/

pathogens10080935.

Štros M, Launholt D, Grasser KD. 2007. The HMG-box: a versatile protein

domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life

Sci 64:2590–2606. https://doi.org/10.1007/s00018-007-7162-3.

Rajeswari MR, Jain A. 2002. High-mobility-group chromosomal proteins,

HMGA1 as potential tumour markers. Curr Sci 82:838–844.

Valencia-Sánchez MI, Abini-Agbomson S, Wang M, Lee R, Vasilyev N,

Zhang J, De Ioannes P, La Scola B, Talbert P, Henikoff S, Nudler E, Erives

A, Armache K-J. 2021. The structure of a virus-encoded nucleosome.

Nat Struct Mol Biol 28:413–417. https://doi.org/10.1038/s41594-021

-00585-7.

Liu Y, Bisio H, Toner CM, Jeudy S, Philippe N, Zhou K, Bowerman S, White A,

Edwards G, Abergel C, Luger K. 2021. Virus-encoded histone doublets are

essential and form nucleosome-like structures. Cell 184:4237–4250.e19.

https://doi.org/10.1016/j.cell.2021.06.032.

Oliveira GP, Andrade AC, dos SP, Rodrigues RAL, Arantes TS, Boratto PVM,

Silva LKDS, Dornas FP, Trindade G, de S, Drumond BP, La Scola B, Kroon

EG, Abrahão JS. 2017. Promoter motifs in NCLDVs: an evolutionary perspective. Viruses 9:1–20. https://doi.org/10.3390/v9010016.

Dizman YA, Demirbag Z, Ince IA, Nalcacioglu R. 2012. Transcriptomic analysis of Chilo iridescent virus immediate early promoter. Virus Res 167:

353–357. https://doi.org/10.1016/j.virusres.2012.05.025.

Fitzgerald LA, Boucher PT, Yanai-Balser GM, Suhre K, Graves MV, Van

Etten JL. 2008. Putative gene promoter sequences in the chlorella viruses.

Virology 380:388–393. https://doi.org/10.1016/j.virol.2008.07.025.

Oliveira GP, Lima MT, Arantes TS, Assis FL, Rodrigues RAL, da Fonseca FG,

Bonjardim CA, Kroon EG, Colson P, La Scola B, Abrahão JS. 2017. The

investigation of promoter sequences of marseilleviruses highlights a remarkable abundance of the AAATATTT motif in intergenic regions. J Virol

91:1–10. https://doi.org/10.1128/JVI.01088-17.

López-Camarillo C, Orozco E, Marchat LA. 2005. Entamoeba histolytica:

comparative genomics of the pre-mRNA 39 end processing machinery.

Exp Parasitol 110:184–190. https://doi.org/10.1016/j.exppara.2005.02.024.

Priet S, Lartigue A, Debart F, Claverie JM, Abergel C. 2015. MRNA maturation in giant viruses: variation on a theme. Nucleic Acids Res 43:3776–3788.

https://doi.org/10.1093/nar/gkv224.

Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat PS, Roberts TM, Gjoerup OV.

2009. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83:117–127.

https://doi.org/10.1128/JVI.01515-08.

Orba Y, Suzuki T, Makino Y, Kubota K, Tanaka S, Kimura T, Sawa H. 2010.

Large T antigen promotes JC virus replication in G2-arrested cells by

inducing ATM- and ATR-mediated G2 checkpoint signaling. J Biol Chem

285:1544–1554. https://doi.org/10.1074/jbc.M109.064311.

Weitzman MD, Fradet-Turcotte A. 2018. Virus DNA replication and the

host DNA damage response. Annu Rev Virol 5:141–164. https://doi.org/10

.1146/annurev-virology-092917-043534.

Borges I, Rodrigues RAL, Dornas FP, Almeida G, Aquino I, Bonjardim CA,

Kroon EG, La Scola B, Abrahão JS. 2019. Trapping the enemy:

MicrobiolSpectrum.asm.org

15

Downloaded from https://journals.asm.org/journal/spectrum on 23 June 2022 by 133.3.201.31.

Transcription Profile of Medusavirus

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Zhang et al.

55.

56.

57.

58.

Volume 9 Issue 2 e00064-21

59. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther

O. 2017. DeepLoc: prediction of protein subcellular localization using

deep learning. Bioinformatics 33:3387–3395. https://doi.org/10.1093/

bioinformatics/btx431.

60. Bailey Timothy LEC. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Second Int Conf Intell Syst

Mol Biol 2:28–36.

61. Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of

a given motif. Bioinformatics 27:1017–1018. https://doi.org/10.1093/

bioinformatics/btr064.

62. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R. 2001.

RNAMotif, an RNA secondary structure definition and search algorithm.

Nucleic Acids Res 29:4724–4735. https://doi.org/10.1093/nar/29.22.4724.

63. Yu G, Wang LG, Han Y, He QY. 2012. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287.

https://doi.org/10.1089/omi.2011.0118.

MicrobiolSpectrum.asm.org

16

Downloaded from https://journals.asm.org/journal/spectrum on 23 June 2022 by 133.3.201.31.

54.

Vermamoeba vermiformis circumvents Faustovirus Mariensis dissemination by enclosing viral progeny inside cysts. J Virol 93:1–19. https://doi

.org/10.1128/JVI.00312-19.

Hierholzer JC, Killington RA. 1996. Virus isolation and quantitation, p

25–46. In Mahy BWJ, Kangro HO (ed), Virology methods manual. Academic Press, London.

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with

low memory requirements. Nat Methods 12:357–360. https://doi.org/10

.1038/nmeth.3317.

Anders S, Pyl PT, Huber W. 2015. HTSeq: a Python framework to work

with high-throughput sequencing data. Bioinformatics 31:166–169.

https://doi.org/10.1093/bioinformatics/btu638.

Charrad M, Ghazzali N, Boiteau V, Niknafs A. 2014. Nbclust: an R package

for determining the relevant number of clusters in a data set. J Stat Softw

61:1–36. https://www.jstatsoft.org/article/view/v061i06.

Desgraupes B. 2018. clusterCrit: Clustering Indices. R package version

1.2.8. https://CRAN.R-project.org/package=clusterCrit.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る