リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A strategy to regulate the yield ratio of a metastable high Zr-containing β titanium alloy: Synergistic effects of the β domain, β stability and β/α interfaces by varying the α phase content」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A strategy to regulate the yield ratio of a metastable high Zr-containing β titanium alloy: Synergistic effects of the β domain, β stability and β/α interfaces by varying the α phase content

Zhao, Xiaoli 大阪大学

2023.08.15

概要

The yield ratio, which is the ratio of the yield strength to the
tensile strength of materials, is a key parameter in plastic processing. ...

この論文で使われている画像

参考文献

[23]

[1] Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, Effect of microstructure on the yield ratio

and low temperature toughness of linepipe steels, ISIJ Int. 42 (2002) 1571–1577,

https://doi.org/10.2355/isijinternational.42.1571

[2] X. Li, Y. Liu, K. Gan, J. Dong, C. Liu, Acquiring a low yield ratio well synchronized

with enhanced strength of HSLA pipeline steels through adjusting multiplephase microstructures, Mater. Sci. Eng. A 785 (2020) 139350, , https://doi.org/10.

1016/j.msea.2020.139350

[3] B.B. He, M. Wang, L. Liu, M.X. Huang, High-strength medium Mn quenching and

partitioning steel with low yield ratio, Mater. Sci. Technol. 35 (2019) 2109–2114,

https://doi.org/10.1080/02670836.2019.1566046

[4] Y. Liu, L. Xu, C. Qiu, Development of an additively manufactured metastable

beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield

strength, Addit. Manuf. 60 (2022) 103208, , https://doi.org/10.1016/j.addma.

2022.103208

[5] G. Deng, X. Zhao, L. Su, P. Wei, L. Zhang, L. Zhan, Y. Chong, H. Zhu, N. Tsuji, Effect

of high pressure torsion process on the microhardness, microstructure and tri­

bological property of Ti6Al4V alloy, J. Mater. Sci. Technol. 94 (2021) 183–195,

https://doi.org/10.1016/j.jmst.2021.03.044

[6] Y. Chong, G. Deng, A. Shibata, N. Tsuji, Microstructure evolution and phase

transformation of Ti-1.0 wt%Fe alloy with an equiaxed α + β initial microstructure

during high-pressure torsion and subsequent annealing, Adv. Eng. Mater. 21

(2019), https://doi.org/10.1002/adem.201900607

[7] G. Deng, T. Bhattacharjee, Y. Chong, R. Zheng, Y. Bai, A. Shibata, N. Tsuji,

Characterization of microstructure and mechanical property of pure titanium

with different Fe addition processed by severe plastic deformation and sub­

sequent annealing, IOP Conf. Ser. Mater. Sci. Eng. 194 (2017), https://doi.org/10.

1088/1757-899X/194/1/012020

[8] G. Deng, Y. Chong, L. Su, L. Zhan, P. Wei, X. Zhao, L. Zhang, Y. Tian, H. Zhu, N. Tsuji,

Mechanisms of remarkable wear reduction and evolutions of subsurface mi­

crostructure and nano-mechanical properties during dry sliding of nano-grained

Ti6Al4V alloy: a comparative study, Tribol. Int. 169 (2022) 107464, , https://doi.

org/10.1016/j.triboint.2022.107464

[9] G. Deng, T. Bhattacharjee, Y. Chong, R. Zheng, Y. Bai, A. Shibata, N. Tsuji, Influence

of Fe addition in CP titanium on phase transformation, microstructure and

mechanical properties during high pressure torsion, J. Alloy. Compd. 822 (2020)

153604, , https://doi.org/10.1016/J.JALLCOM.2019.153604

[10] Y. Chong, R. Zheng, G. Deng, A. Shibata, N. Tsuji, Investigation on the micro­

structure and mechanical properties of Ti-1.0Fe alloy with equiaxed α + β mi­

crostructures, Metall. Mater. Trans. A. 51 (2020) 2851–2862, https://doi.org/10.

1007/s11661-020-05760-x

[11] J. Vishnu, M. Sankar, H.J. Rack, N. Rao, A.K. Singh, G. Manivasagam, Effect of phase

transformations during aging on tensile strength and ductility of metastable beta

titanium alloy Ti–35Nb–7Zr–5Ta-0.35O for orthopedic applications, Mater. Sci.

Eng. A 779 (2020) 139127, , https://doi.org/10.1016/j.msea.2020.139127

[12] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical

properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A

243 (1998) 244–249, https://doi.org/10.1016/s0921-5093(97)00808-3

[13] Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Super-elastic titanium alloy

with unstable plastic deformation, Appl. Phys. Lett. 87 (2005) 91906, https://doi.

org/10.1063/1.2037192

[14] X.L. Zhao, M. Niinomi, M. Nakai, G. Miyamoto, T. Furuhara, Microstructures and

mechanical properties of metastable Ti–30Zr–(Cr, Mo) alloys with changeable

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

12

Young’s modulus for spinal fixation applications, Acta Biomater. 7 (2011)

3230–3236, https://doi.org/10.1016/j.actbio.2011.04.019

J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth,

Deformation mechanisms in a metastable beta titanium twinning induced

plasticity alloy with high yield strength and high strain hardening rate, Acta

Mater. 152 (2018) 301–314, https://doi.org/10.1016/j.actamat.2018.04.035

J.M. Oh, C.H. Park, J.T. Yeom, J.K. Hong, N. Kang, S.W. Lee, High strength and

ductility in low-cost Ti–Al–Fe–Mn alloy exhibiting transformation-induced

plasticity, Mater. Sci. Eng. A 772 (2020) 138813, , https://doi.org/10.1016/j.msea.

2019.138813

M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, The influence of β

phase stability on deformation mode and compressive mechanical properties of

Ti-10V–3Fe-3Al alloy, Acta Mater. 84 (2015) 124–135, https://doi.org/10.1016/j.

actamat.2014.10.043

X.L. Zhao, M. Niinomi, M. Nakai, T. Ishimoto, T. Nakano, Development of high Zrcontaining Ti-based alloys with low Young’s modulus for use in removable im­

plants, Mater. Sci. Eng. C 31 (2011) 1436–1444, https://doi.org/10.1016/j.msec.

2011.05.013

X.L. Zhao, L. Li, M. Niinomi, M. Nakai, D.L. Zhang, C. Suryanarayana, Metastable

Zr–Nb alloys for spinal fixation rods with tunable Young’s modulus and low

magnetic resonance susceptibility, Acta Biomater. 62 (2017) 372–384, https://

doi.org/10.1016/j.actbio.2017.08.026

R.P. Kolli, W.J. Joost, S. Ankem, Phase stability and stress-induced transforma­

tions in beta titanium alloys, JOM 67 (2015) 1273–1280, https://doi.org/10.1007/

s11837-015-1411-y

M.H. Cai, C.Y. Lee, Y.K. Lee, Effect of grain size on tensile properties of finegrained metastable β titanium alloys fabricated by stress-induced martensite

and its reverse transformations, Scr. Mater. 66 (2012) 606–609, https://doi.org/

10.1016/j.scriptamat.2012.01.015

J.F. Xiao, X.K. Shang, Y. Li, Q.W. Guan, B. He, Grain size-dependent tensile be­

havior in a metastable beta titanium alloy, Mater. Sci. Technol. (2022) 469–483,

https://doi.org/10.1080/02670836.2022.2062637

Z. Liao, B. Luan, X. Zhang, R. Liu, K.L. Murty, Q. Liu, Effect of varying α phase

fraction on the mechanical properties and deformation mechanisms in a me­

tastable β-ZrTiAlV alloy, Mater. Sci. Eng. A 772 (2020) 138784, , https://doi.org/

10.1016/j.msea.2019.138784

Z. Chen, L. Yang, X. Ma, Q.I. Sun, F. Li, Tensile deformation behavior of a het­

erogeneous structural dual-phase metastable b titanium alloy, Metall. Mater.

Trans. A. 53 (2022) 2754–2767, https://doi.org/10.1007/s11661-022-06705-2

C. Li, X. Wu, J.H. Chen, S. van der Zwaag, Influence of α morphology and volume

fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3Al,

Mater. Sci. Eng. A 528 (2011) 5854–5860, https://doi.org/10.1016/j.msea.2011.03.

107

C. Li, J. Chen, Y.J. Ren, W. Li, J.J. He, J.H. Chen, Effect of solution heat treatment on

the stress-induced martensite transformation in two new titanium alloys, J.

Alloy. Compd. 641 (2015) 192–200, https://doi.org/10.1016/j.jallcom.2015.04.070

C. Zhu, X. Zhang, C. Li, C. Liu, K. Zhou, A strengthening strategy for metastable β

titanium alloys: Synergy effect of primary α phase and β phase stability, Mater.

Sci. Eng. A 852 (2022) 143736, , https://doi.org/10.1016/j.msea.2022.143736

M.C. Zang, H.Z. Niu, H.R. Zhang, H. Tan, D.L. Zhang, Cryogenic tensile properties

and deformation behavior of a superhigh strength metastable beta titanium

alloy Ti–15Mo–2Al, Mater. Sci. Eng. A 817 (2021) 141344, , https://doi.org/10.

1016/J.MSEA.2021.141344

Z. He, N. Jia, H. Wang, H. Yan, Y. Shen, Synergy effect of multi-strengthening

mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol.

86 (2021) 158–170, https://doi.org/10.1016/j.jmst.2020.12.079

X. Zhao, Y. Wang, H. Xue, N. Jia, Y. Liu, D. Zhang, The effect of strain rate on

deformation-induced α′ phase transformation and mechanical properties of a

metastable β-type Ti–30Zr–5Mo alloy, J. Alloy. Compd. 894 (2022) 162394, ,

https://doi.org/10.1016/J.JALLCOM.2021.162394

Z.F. He, N. Jia, H.W. Wang, Y. Liu, D.Y. Li, Y.F. Shen, The effect of strain rate on

mechanical properties and microstructure of a metastable FeMnCoCr high en­

tropy alloy, Mater. Sci. Eng. A 776 (2020), https://doi.org/10.1016/j.msea.2020.

138982

Z. Liao, B. Luan, X. Zhang, R. Liu, K.L. Murty, Q. Liu, Effect of varying α phase

fraction on the mechanical properties and deformation mechanisms in a me­

tastable β-ZrTiAlV alloy, Mater. Sci. Eng. A 772 (2020) 138784, , https://doi.org/

10.1016/j.msea.2019.138784

F. Niessen, A.A. Gazder, D.R.G. Mitchell, E.V. Pereloma, In-situ observation of

nucleation, growth and interaction of deformation-induced α″ martensite in

metastable Ti–10V–2Fe–3Al, Mater. Sci. Eng. A 802 (2020) 140237, , https://doi.

org/10.1016/j.msea.2020.140237

E. Kobayashi, M. Ando, Y. Tsutsumi, H. Doi, T. Yoneyama, M. Kobayashi,

T. Hanawa, Inhibition effect of zirconium coating on calcium phosphate pre­

cipitation of titanium to avoid assimilation with bone, Mater. Trans. 48 (2007)

301–306, https://doi.org/10.2320/matertrans.48.301

X. Sun, D. Liu, M. Chen, W. Zhou, N. Nomura, T. Hanawa, Influence of annealing

treatment on the microstructure, mechanical performance and magnetic sus­

ceptibility of low magnetic Zr–1Mo parts manufactured via laser additive

manufacturing, Mater. Sci. Eng. A 804 (2021) 140740, , https://doi.org/10.1016/j.

msea.2021.140740

R. Xue, D. Wang, Y. Tian, J. Wang, L. Liu, L. Zhang, Zr-xNb-4Sn alloys with low

Young’s modulus and magnetic susceptibility for biomedical implants, Prog. Nat.

Sci. Mater. Int. 31 (2021) 772–778, https://doi.org/10.1016/j.pnsc.2021.09.008

Z.W. Zhu, C.Y. Xiong, J. Wang, R.G. Li, Y. Ren, Y.D. Wang, Y. Li, In situ synchrotron

X-ray diffraction investigations of the physical mechanism of ultra-low strain

X. Zhao, R. Zhu, W. Song et al.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Journal of Alloys and Compounds 952 (2023) 170024

hardening in Ti–30Zr–10Nb alloy, Acta Mater. 154 (2018) 45–55, https://doi.org/

10.1016/j.actamat.2018.05.034

X.L. Zhao, M. Niinomi, M. Nakai, Relationship between various deformation-in­

duced products and mechanical properties in metastable Ti–30Zr–Mo alloys for

biomedical applications, J. Mech. Behav. Biomed. Mater. 4 (2011) 2009–2016,

https://doi.org/10.1016/j.jmbbm.2011.06.020

A. Maghsoudlou, A. Zarei-Hanzaki, H.R. Abedi, A. Barabi, F. Pilehva, D. Dietrich,

T. Lampke, The room temperature tensile deformation behavior of thermo­

mechanically processed β-metastable Ti–Nb–Ta–Zr bio-alloy: the role of de­

formation-induced martensite, Mater. Sci. Eng. A 738 (2018) 15–23, https://doi.

org/10.1016/j.msea.2018.09.038

X. Ma, Z. Chen, L. Xiao, W. Lu, S. Luo, Y. Mi, Compressive deformation of a me­

tastable β titanium alloy undergoing a stress-induced martensitic transforma­

tion: the role of β grain size, Mater. Sci. Eng. A 794 (2020) 139919, , https://doi.

org/10.1016/j.msea.2020.139919

F. Brunke, C. Siemers, J. Rösler, Second-generation titanium alloys Ti–15Mo and

Ti–13Nb–13Zr: a comparison of the mechanical properties for implant applica­

tions, MATEC Web Conf. 321 (2020) 05006, https://doi.org/10.1051/matecconf/

202032105006

J. Wang, Y. Zhao, W. Zhou, Q. Zhao, S. Huang, W. Zeng, In-situ investigation on

tensile deformation and fracture behaviors of a new metastable β titanium alloy,

Mater. Sci. Eng. A 799 (2021) 140187, , https://doi.org/10.1016/j.msea.2020.

140187

H. Lu, P. Ji, B. Li, W. Ma, B. Chen, X. Zhang, X. Zhang, M. Ma, R. Liu, Mechanical

properties and deformation mechanism of a novel metastable β-type

Ti–4V–2Mo–2Fe alloy, Mater. Sci. Eng. A 848 (2022) 143376, , https://doi.org/10.

1016/j.msea.2022.143376

Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of na­

nostructured metals, Mater. Sci. Eng. A 375–377 (2004) 46–52, https://doi.org/

10.1016/j.msea.2003.10.214

X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr,

Comparison of the microstructures and mechanical properties of Ti–6Al–4V

fabricated by selective laser melting and electron beam melting, Mater. Des. 95

(2016) 21–31, https://doi.org/10.1016/j.matdes.2015.12.135

S.C. Wang, M. Aindow, M.J. Starink, Effect of self-accommodation on α / α

boundary boundary populations in pure titanium, Acta Mater. 51 (51) (2003)

2485–2503, https://doi.org/10.1016/S1359-6454(03)00035-1

L. Chai, B. Chen, Z. Zhou, K.L. Murty, Y. Ma, W. Huang, A special twin relationship

or a common Burgers misorientation between α plates after β quenching in Zr

alloy, Mater. Charact. 104 (2015) 61–65, https://doi.org/10.1016/j.matchar.2015.

04.008

S. Zhang, Q. Wang, G. Li, Y. Liu, D. Li, Correlation between heat-treatment win­

dows and mechanical properties of high-temperature titanium alloys Ti-60, Acta

Metall. Sin. 38 (2002) 70–73.

[49] F. Sun, J. Li, H. Kou, B. Tang, H. Chang, J. Cai, L. Zhou, α phase solution kinetics and

solution microstructure characteristics of Ti60 titanium alloy, Chin. J. Nonferr.

Met. 20 (2010) s437–s440.

[50] Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Yielding nature and Hall-Petch

relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal micro­

structures, Scr. Mater. 172 (2019) 77–82, https://doi.org/10.1016/j.scriptamat.

2019.07.015

[51] X. Wu, B. Zhang, Y. Zhang, H. Niu, D. Zhang, Manipulating the strength and

tensile ductility of a PM near α titanium alloy by adjusting the morphologies and

volume fractions of α and βt domains, Mater. Sci. Eng. A 859 (2022) 144184, ,

https://doi.org/10.1016/j.msea.2022.144184

[52] J. Umeda, T. Tanaka, T. Teramae, S. Kariya, J. Fujita, H. Nishikawa, Y. Shibutani,

J. Shen, K. Kondoh, Microstructures analysis and quantitative strengthening

evaluation of powder metallurgy Ti–Fe binary extruded alloys with (α+β)-dualphase, Mater. Sci. Eng. A 803 (2021) 140708, , https://doi.org/10.1016/j.msea.

2020.140708

[53] E. Cerri, E. Ghio, G. Bolelli, Effect of surface roughness and industrial heat

treatments on the microstructure and mechanical properties of Ti6Al4V alloy

manufactured by laser powder bed fusion in different built orientations, Mater.

Sci. Eng. A 851 (2022) 143635, , https://doi.org/10.1016/j.msea.2022.143635

[54] D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenço, C.J.C. Fernandes, M.A.R. Buzalaf,

W.F. Zambuzzi, C.R. Grandini, Development of Ti–15Zr–Mo alloys for applying as

implantable biomedical devices, J. Alloy. Compd. 749 (2018) 163–171, https://

doi.org/10.1016/j.jallcom.2018.03.308

[55] P. Akira, B. Kuroda, M. Afonso, R. Buzalaf, C. Roberto, Effect of molybdenum on

structure, microstructure and mechanical properties of biomedical Ti–20Zr–Mo

alloys, Mater. Sci. Eng. C 67 (2016) 511–515, https://doi.org/10.1016/j.msec.2016.

05.053

[56] J. Lu, Y. Zhao, P. Ge, H. Niu, Microstructure and beta grain growth behavior of Ti

–Mo alloys solution treated, Mater. Charact. 84 (2013) 105–111, https://doi.org/

10.1016/j.matchar.2013.07.014

[57] R. Suyalatu, Y. Kondo, H. Tsutsumi, N. Doi, T. Nomura, Hanawa, Effects of phase

constitution on magnetic susceptibility and mechanical properties of Zr-rich

Zr–Mo alloys, Acta Biomater. 7 (2011) 4259–4266, https://doi.org/10.1016/j.

actbio.2011.07.005

[58] P. Tsipouridis, L. Koll, C. Krempaszky, E. Werner, On the strength of grain and

phase boundaries in ferritic-martensitic dual-phase steels, Int. J. Mater. Res. 102

(2011) 674–686, https://doi.org/10.3139/146.110519

[59] Y. Fu, W. Xiao, J. Wang, L. Ren, X. Zhao, C. Ma, A novel strategy for developing α + β

dual-phase titanium alloys with low Young’s modulus and high yield strength, J.

Mater. Sci. Technol. 76 (2021) 122–128, https://doi.org/10.1016/J.JMST.2020.11.018

[60] S.W. Lee, J.M. Oh, C.H. Park, J.K. Hong, J.T. Yeom, Deformation mechanism of me­

tastable titanium alloy showing stress-induced α′-martensitic transformation, J.

Alloy. Compd. 782 (2019) 427–432, https://doi.org/10.1016/j.jallcom.2018.12.160

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る