リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Study for Improvement of Combustion and Exhaust Emissions of a Diesel Engine」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Study for Improvement of Combustion and Exhaust Emissions of a Diesel Engine

Jo, Hyun 京都大学 DOI:10.14989/doctor.k24253

2022.09.26

概要

本論文はディーゼル機関の高効率化および排出ガス低減を目指して,燃焼および排気後処理の両面から取り組んだ研究をまとめたものであり,6章からなっている.

まず,第1章では現在の地球温暖化への取り組みとして,あらゆる産業において温室効果ガスの排出量を減らすための技術開発が求められており,自動車業界にとっても極めて重要な社会課題なっていることを示している.とくに,大型の自動車等において主力な動力源となっているディーゼル機関では,すぐに電動化パワートレイン等への置き換えが困難であることから,低エミッションを保ちつつ効率を大幅に向上することは喫緊の課題である.これに対して本研究課題では高効率化をめざして,活発な流動を活用したときのディーゼル噴霧燃焼における流動や熱移動に関する定量的な計測結果に基づき,それらのメカニズムを明らかにすることを目的とするとともに,排出される窒素酸化物を低減する選択還元触媒における最適化手法について検討する必要があることを示している.

第2章では,高速燃焼実現に向けて,独自に設計・開発した急速圧縮膨張装置(RCEM)を用いて高温・高圧雰囲気中に形成される噴霧火炎内部の流速分布を粒子画像流束測定法により時系列で取得するとともに,OH*の分布に基づく高温領域を可視化することによって,熱発生過程に及ぼす流動の作用を検討した.とくに流速分布より得られる局所速度変動強度に基づき乱流混合が活発な領域を明らかにするとともに,高温領域の分布との比較を行うことによって,噴霧火炎の熱発生領域のやや噴霧中心側に混合領域が存在することや,このような位置関係については噴射条件を変化させてもほとんど変化しないことなどを明らかにした.

第3章では,ディーゼル噴霧火炎において,すす発生に大きく作用する火炎基部構造に及ぼす近接噴霧火炎の影響についてRCEMを用いて実験的に検討した.その結果,隣接角度が小さい場合,いわゆる「リフトオフ長」が短くなるが,液相長についてはあまり変化せず,これがすす生成量増加の要因である可能性を示した.また,雰囲気酸素濃度を低下させると液相長は変化せず「リフトオフ長」が長くなることなどを明らかにした.さらに,画像流束測定法を用いて噴霧火炎周辺の速度分布を計測し,噴霧下流において生じた高温ガスが逆流して噴霧基部からエントレインされる過程が重要であることを示した.

第4章では,ディーゼル機関の熱効率向上を阻害している壁面への熱移動現象を明らかにするために,壁面近傍の流動と壁における熱流束を同時に計測することを試みた.ここでは本研究用に新たに開発した多点型熱流束センサーを用いて壁面表面温度および熱流束を計測するとともに,壁面近傍に形成される流動を画像流束測定法により求めた.その結果,強い曲がり流れが生じる位置において局所的に熱流束が上昇することや,熱流束は壁面近傍に形成された流動の速度勾配テンソルの大きさに大きく影響を受けることなどを明らかにした.

第5章では,ディーゼル機関の燃焼過程により生成・排出される窒素酸化物を分解するための選択還元触媒システムを対象として,触媒において反応せずに排出されるアンモニアを低減するための尿素水噴射条件を実験的に明らかにすることを目的としている.ここでは実際のエンジンおよび排気後処理システムを用いて,システムの各段におけるアンモニア,一酸化窒素および二酸化窒素の濃度を計測することによってエンジン運転条件および排気温度による触媒動作およびアンモニアの触媒内における吸着・脱離過程の変化を明らかにした.これらの結果に基づきエンジン運転条件に対する尿素噴射に関する最適化手法の指針を示した.

最後に,第6章では,本研究の結果をまとめるとともに,今後のディーゼル機関における高効率燃焼法の可能性を示すとともに,さらに詳細に検討すべき項目を明らかにしている.

以上,本研究では,ディーゼル機関における熱効率を向上させる燃焼法の検討と同時に,壁面への熱移動を低減させる手法の指針を明らかにした.さらに,選択還元触媒による排気後処理システムにより窒素酸化物を低減する際に,未反応アンモニアの排出を低減するための尿素噴射手法の指針を明らかにしており,ディーゼル機関における高効率・低エミッション実現の重要な知見が得られた.

参考文献

Chapter1

[1]. BP, “Statistical Review of World Energy 2021.”, [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2021-full-report.pdf

[2]. ICCT, “A new lift-cycle assessment of the greenhouse gas emissions of combustion engine and electric passenger cars in major markets.”, [Online]. Available: https://theicct.org/publication/a-globalcomparison-of-the-life-cycle-greenhouse-gas-emissions-of-combustion-engine-and-electricpassenger-cars/

[3]. Funayama, Y., Nakajima, H. and Shimokawa, K., "A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance," SAE Technical Paper 2016-01- 0722, 2016, doi:10.4271/2016-01-0722.

[4]. Kimura, S., Matsui, Y., and Itoh, T., "Effects of Combustion Chamber Insulation on the Heat Rejection and Thermal Efficiency of Diesel Engines," SAE Technical Paper 920543, 1992, https://doi.org/10.4271/920543.

[5]. Shudo, T., Nabetani, S., Nakajima, Y., “Analysis of the degree of constant volume and cooling loss in a spark ignition engine fuelled with hydrogen”, SAGE journal Volume: 2 issue: 1, page(s): 81-92 Issue published: February 1, 2001, https://doi.org/10.1243/1468087011545361

[6]. Assanis, D. and Badillo, E., "Transient Heat Conduction in Low-Heat-Rejection Engine Combustion Chambers," SAE Technical Paper 870156, 1987, https://doi.org/10.4271/870156.

[7]. Wong, V., Bauer, W., Kamo, R., Bryzik, W., "Assessment of Thin Thermal Barrier Coatings for I.C. Engines," SAE Technical Paper 950980, 1995, https://doi.org/10.4271/950980.

[8]. Saad, D., Saad, P., Kamo, L., Mekari, M., "Thermal Barrier Coatings for High Output Turbocharged Diesel Engine," SAE Technical Paper 2007-01-1442, 2007, https://doi.org/10.4271/2007-01-1442.

[9]. Fujimoto, H., Yamamoto, H., Fujimoto, M., and Yamashita, H., "A Study on Improvement of Indicated Thermal Efficiency of ICE Using High Compression Ratio and Reduction of Cooling Loss," SAE Technical Paper 2011-01-1872, 2011, https://doi.org/10.4271/2011-01-1872.

[10]. Kono, M., Basaki, M., Ito, M., Hashizume, T., "Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine," SAE Int. J. Engines 5(2):504-515, 2012, https://doi.org/10.4271/2012-01-0689.

[11]. Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., "Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines," SAE Int. J. Engines 9(3):1449-1459, 2016, https://doi.org/10.4271/2016-01-0661.

[12]. Kawaguchi, A., Iguma, H., Yamashita, H., Takada, N., "Thermo-Swing Wall Insulation Technology; - A Novel Heat Loss Reduction Approach on Engine Combustion Chamber -," SAE Technical Paper 2016-01-2333, 2016, https://doi.org/10.4271/2016-01-2333.

[13]. Allocca, L., Belardini, P., Bertoli, C., Corcione, F., "Experimental and Numerical Analysis of a Diesel Spray," SAE Technical Paper 920576, 1992, https://doi.org/10.4271/920576.

[14]. Naber, J. and Siebers, D., "Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays," SAE Technical Paper 960034, 1996, https://doi.org/10.4271/960034.

[15]. Khalid, A., Yatsufusa, T., Miyamoto, T., Kawakami, J., Kidoguchi, Y., “Analysis of Relation between Mixture Formation during Ignition Delay Period and Burning Process in Diesel Combustion”, SAE Technical Paper, 2009-32-0018, 2009

[16]. Zama, Y., Ochiai,W., Sugawara, K., Furuhata, T., Arai, M., “Study on Mixing Process of Diesel Spray under High Ambient Gas Density Condition,”, Atomization and Sprays, Volume 23, Issue 5, 2013, pp. 443-461, 10.1615/AtomizSpr.2013007347

[17]. Kobashi, Y., Yokogawa, K., Miyabe, H., Hase, R., Kato, S., “Flow Fields and Turbulent Characteristics in Non-Evaporating Diesel Sprays”, Volume 28, Issue 8, 2018, pp. 735-749 DOI: 10.1615/AtomizSpr.2018026468

[18]. Pang, K., Jangi, M., Bai, X., Schramm, J., Walther, J., “Modelling of diesel spray flames under enginelike conditions using an accelerated Eulerian Stochastic Field method”, Combustion and Flame, Volume 193, 2018, Pages 363-383, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2018.03.030.

[19]. Pang, K., Jangi, M., Bai, X., Schramm, J., Walther, J., Glarborg, P., “Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion”, Fuel, Volume 237, 2019, Pages 676- 685, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2018.10.020.

[20]. Desantes, J., García, J., Novella, R., Pérez, E., “Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray”, Computers & Fluids, Volume 200, 2020, 104419, ISSN 0045-7930, https://doi.org/10.1016/j.compfluid.2019.104419.

[21]. Kamimoto, T., Yokota, H., Kobayashi, H., "Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames," SAE Technical Paper 871610, 1987, https://doi.org/10.4271/871610.

[22]. Allocca, L., Belardini, P., Bertoli, C., Corcione, F., "Experimental and Numerical Analysis of a Diesel Spray," SAE Technical Paper 920576, 1992, https://doi.org/10.4271/920576.

[23]. Kojima, H., Kawanabe, H., Ishiyama, T., “A Study on Mixture Formation Process in a Diesel Spray Using PLIF Method”, THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines

[24]. Desantes, J., Pastor, J., García-Oliverj, J., Pastor, j., “A 1D model for the description of mixing controlled reacting diesel sprays”, Combustion and Flame,Volume 156, Issue 1, 2009, Pages 234-249, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2008.10.008.

[25]. Milan, V., Zvonimir, P., Wilfried, E., Neven, D,, “Modelling spray and combustion processes in diesel engine by using the coupled Eulerian–Eulerian and Eulerian–Lagrangian method”, Energy Conversion and Management, Volume 125, 2016, Pages 15-25, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2016.03.072.

[26]. Mehdi, J., Rickard, S., Bengt, J., Xue-Song, Bai, “On large eddy simulation of diesel spray for internal combustion engines”, International Journal of Heat and Fluid Flow, Volume 53, 2015, Pages 68-80, ISSN 0142-727X, https://doi.org/10.1016/j.ijheatfluidflow.2015.02.002.

[27]. Zhou, L., Luo, K., Qin, W., Jia, M., Shuai, S., “Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions”, Energy Conversion and Management, Volume 93, 2015, Pages 377-387, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2015.01.033.

[28]. Cao, Z., Nishino, K., Mizuno, S., Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray”, Transactions of the Japan Society of Mechanical Engineers Series B, 2001, Volume 67, Issue 653, Pages 241-248, Released on J-STAGE March 28, 2008, Online ISSN 1884-8346, Print ISSN 0387-5016, https://doi.org/10.1299/kikaib.67.241

[29]. Dec, J., Espey, C., "Soot and Fuel Distributions in a D.I. Diesel Engine via 2-D Imaging," SAE Technical Paper 922307, 1992, https://doi.org/10.4271/922307.

[30]. Dec, J., "A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*," SAE Technical Paper 970873, 1997, https://doi.org/10.4271/970873.

[31]. Flynn, P., Durrett, R., Hunter, G., zur Loye, A. et al., "Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation," SAE Technical Paper 1999-01-0509, 1999, https://doi.org/10.4271/1999-01-0509.

[32]. Kosaka, H., Aizawa, T., Kamimoto, T., “Two-dimensional imaging of ignition and soot formation processes in a diesel flame”, Int. J. Engine Res. Vol. 6 No. 1, https://doi.org/10.1243/146808705X7347

[33]. Kosaka, H., Nishigaki, T., Kamimoto, T., Sano, T., "Simultaneous 2-D Imaging of OH Radicals and Soot in a Diesel Flame by Laser Sheet Techniques," SAE Technical Paper 960834, 1996, https://doi.org/10.4271/960834.

[34]. Siebers, D., "Liquid-Phase Fuel Penetration in Diesel Sprays," SAE Technical Paper 980809, 1998, https://doi.org/10.4271/980809.

[35]. Verhoeven, D., Vanhemelryck, J., and Baritaud, T., "Macroscopic and Ignition Characteristics of HighPressure Sprays of Single-Component Fuels," SAE Technical Paper 981069, 1998, https://doi.org/10.4271/981069.

[36]. Siebers, D. and Higgins, B., "Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions," SAE Technical Paper 2001-01-0530, 2001, https://doi.org/10.4271/2001-01-0530.

[37]. Siebers, D., Higgins, B., Pickett, L., "Flame Lift-Off on Direct-Injection Diesel Fuel Jets: Oxygen Concentration Effects," SAE Technical Paper 2002-01-0890, 2002, https://doi.org/10.4271/2002-01- 0890.

[38]. Pickett, L., Siebers, D., and Idicheria, C., "Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets," SAE Technical Paper 2005-01-3843, 2005, https://doi.org/10.4271/2005- 01-3843.

[39]. Donkerbroek, A., Boot, M., Luijten, C., Dam, N., Meulen, J., “Flame lift-off length and soot production of oxygenated fuels in relation with ignition delay in a DI heavy-duty diesel engine”, Combustion and Flame, Volume 158, Issue 3, 2011, Pages 525-538, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2010.10.003.

[40]. Persson, H., Andersson, Ö., Egnell, R., “Fuel effects on flame lift-off under diesel conditions”, Combustion and Flame, Volume 158, Issue 1, 2011, Pages 91-97, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2010.07.020.

[41]. Payri, R., Viera, J., Pei, Y., Som, S., “Experimental and numerical study of lift-off length and ignition delay of a two-component diesel surrogate”, Fuel, Volume 158, 2015, Pages 957-967, ISSN 0016- 2361, https://doi.org/10.1016/j.fuel.2014.11.072.

[42]. Li, D., He, Z., Xuan, T., Zhong, W., Cao, J., Wang, Q., Wang, P., “Simultaneous capture of liquid length of spray and flame lift-off length for second-generation biodiesel/diesel blended fuel in a constant volume combustion chamber”, Fuel, Volume 189, 2017, Pages 260-269, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2016.10.058.

[43]. Rusly, A., Le, M., Kook, S., Hawkes, E., “The shortening of lift-off length associated with jet–wall and jet–jet interaction in a small-bore optical diesel engine”, Fuel, Volume 125, 2014, Pages 1-14, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2014.02.004.

[44]. Abdullah, M., Shinobu, A., Tomoki, K., Aizawa, T., “Effects of inversed-delta injection rate shaping on diesel spray flame liquid length, lift-off length and soot onset”, Fuel, Volume 258, 2019, 116170, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2019.116170.

[45]. Abdullah, M., Shinobu, A., Tomoki, K., Aizawa, T., Shimada, T., Aizawa, T., “Investigation of inversed-delta injection rate shaping diesel spray flame structure and combustion characteristics towards thermal efficiency improvement”, Applied Thermal Engineering, Volume 160, 2019, 113986, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2019.113986.

[46]. Chartier, C., Aronsson, U., Andersson, Ö., Egnell, R., Johansson, B., “Influence of jet–jet interactions on the lift-off length in an optical heavy-duty DI diesel engine”, Fuel, Volume 112, 2013, Pages 311- 318, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2013.05.021.

[47]. Toda, N., Yamashita, H., Mashida, M., “PTV analysis of the entrained air into the diesel spray at highpressure injection”, Proceedings Volume 9232, International Conference on Optical Particle Characterization (OPC 2014); 92320C (2014), https://doi.org/10.1117/12.2063632 - 19 –

[48]. Fuyuto, T., Hattori, Y., Yamashita, H., and Mashida, M., "Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle," SAE Int. J. Engines 9(1):71-83, 2016, https://doi.org/10.4271/2015-01-1837.

[49]. Squaiella, L., Martins, C., Lacava, P., “Strategies for emission control in diesel engine to meet Euro VI”, Fuel, Volume 104, 2013, Pages 183-193, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2012.07.027.

[50]. Ko, J., Jin, D., Jang, W., Myung, C., Kwon, S., Park, S., “Comparative investigation of NOX emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures”, Applied Energy, Volume 187, 2017, Pages 652-662, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2016.11.105.

[51]. Myung, C., Jang, W., Kwon, S., Ko, J., Jin, D., Park, S., “Evaluation of the real-time de-NOX performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles”, Energy, Volume 132, 2017, Pages 356-369, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2017.05.089.

[52]. Cha, J., Lee, J., Chon, M., “Evaluation of real driving emissions for Euro 6 light-duty diesel vehicles equipped with LNT and SCR on domestic sales in Korea”, Atmospheric Environment, Volume 196, 2019, Pages 133-142, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2018.09.029.

[53]. Costagliola, M., Costabile, M., Prati, M., “Impact of road grade on real driving emissions from two Euro 5 diesel vehicles, Applied Energy, Volume 231, 2018, Pages 586-593, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2018.09.108.

[54]. Salman, A., Enger, B., Auvray, X., Lødeng, R., Menon, M., Waller, D., Rønning, M., “Catalytic oxidation of NO to NO2 for nitric acid production over a Pt/Al2O3 catalyst”, Applied Catalysis A: General, Volume 564, 2018, Pages 142-146, ISSN 0926-860X, https://doi.org/10.1016/j.apcata.2018.07.019.

[55]. Shirahama, N., Mochida, I., Korai, Y., Choi, K., Enjoji, T., Shimohara, T., Yasutake, A., “Reaction of NO with urea supported on activated carbons”, Applied Catalysis B: Environmental, Volume 57, Issue 4, 2005, Pages 237-245, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2004.04.004.

[56]. Dumesic, J., Topsøe, N., Topsøe, H., Chen, Y., Slabiak, T., “Kinetics of Selective Catalytic Reduction of Nitric Oxide by Ammonia over Vanadia/Titania”, Journal of Catalysis, Volume 163, Issue 2, 1996, Pages 409-417, ISSN 0021-9517, https://doi.org/10.1006/jcat.1996.0342.

[57]. Girard, J., Montreuil, C., Kim, J., Cavataio, G., "Technical Advantages of Vanadium SCR Systems for Diesel NOX Control in Emerging Markets," SAE Int. J. Fuels Lubr. 1(1):488-494, 2009, https://doi.org/10.4271/2008-01-1029.

[58]. Nahanvandi, M., “Selective Catalytic Reduction (SCR) of NO by Ammonia over V2O5/TiO2 Catalyst in a Catalytic Filter Medium and Honeycomb Reactor: A Kinetic Modeling Study”, Vol. 32, No. 04, pp. 875 - 893, 2015 https://doi.org/10.1590/0104-6632.20150324s00003584

[59]. Liu, Y., Liu, Z., Mnichowicz, N., Harinath, A., Li, H., Bahrami, B., “Chemical deactivation of commercial vanadium SCR catalysts in diesel emission control application”, Chemical Engineering Journal, Volume 287, 2016, Pages 680-690, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2015.11.043.

[60]. Xu, L., Niu, S., Wang, D., Lu, C., Zhang, Q., Zhang, K., Li, J., “Selective catalytic reduction of NOX with NH3 over titanium modified FexMgyOz catalysts: Performance and characterization”, Journal of Industrial and Engineering Chemistry, Volume 63, 2018, Pages 391-404, ISSN 1226-086X, https://doi.org/10.1016/j.jiec.2018.02.039.

[61]. Traa, Y., Burger, B., Weitkamp, J., “Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons”, Microporous and Mesoporous Materials, Volume 30, Issue 1, 1999, Pages 3-41, ISSN 1387-1811, https://doi.org/10.1016/S1387-1811(99)00030-X.

[62]. Grossale, A., Nova, I., Tronconi, E., “Ammonia blocking of the “Fast SCR” reactivity over a commercial Fe-zeolite catalyst for Diesel exhaust aftertreatment”, Journal of Catalysis, Volume 265, Issue 2, 2009, Pages 141-147, ISSN 0021-9517, https://doi.org/10.1016/j.jcat.2009.04.014.

[63]. Colombo, M., Nova, I., Tronconi, E., “A comparative study of the NH3-SCR reactions over a Cuzeolite and a Fe-zeolite catalyst”, Catalysis Today, Volume 151, Issues 3–4, 2010, Pages 223-230, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2010.01.010.

[64]. Xu, H., Li, Y., Xu, B., Cao, Y., Feng, X., Sun, M., Gong, M., Chen, Y., “Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR”, Journal of Industrial and Engineering Chemistry, Volume 36, 2016, Pages 334-345, ISSN 1226-086X, https://doi.org/10.1016/j.jiec.2016.02.024

[65]. Lee, K., Kosaka, H., Sato, S., Yokoi, T., Choi, B., Kim, D., “Effects of Cu loading and zeolite topology on the selective catalytic reduction with C3H6 over Cu/zeolite catalysts”, Journal of Industrial and Engineering Chemistry, Volume 72, 2019, Pages 73-86, ISSN 1226-086X, https://doi.org/10.1016/j.jiec.2018.12.005.

[66].Jung, Y., Shin, T., Pyo, Y., Cho, C., Jang, J., Kim, G., “NOX and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine”, Chemical Engineering Journal, Volume 326, 2017, Pages 853-862, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2017.06.020.

[67]. Cho, C., Pyo, Y., Jang, J., Kim, G., Shin, Y., “NOX reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts”, Applied Thermal Engineering, Volume 110, 2017, Pages 18-24, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2016.08.118.

[68]. Gieshoff, J., Schäfer-Sindlinger, A., Spurk, P., van den Tillaart, J., "Improved SCR Systems for Heavy Duty Applications," SAE Technical Paper 2000-01-0189, 2000, https://doi.org/10.4271/2000-01-0189.

[69]. Koebel, M., Elsener, M., Kleemann, M., “Urea-SCR: a promising technique to reduce NOX emissions from automotive diesel engines”, Catalysis Today, Volume 59, Issues 3–4, 2000, Pages 335-345, ISSN 0920-5861, https://doi.org/10.1016/S0920-5861(00)00299-6.

[70]. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Burkhardt, T., Weibel, M., “NH3-SCR of NOX for diesel exhausts aftertreatment: role of NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling”, Chemical Engineering Science, Volume 62, Issues 18–20, 2007, Pages 5001- 5006, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2006.11.031.

[71]. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, C., Bandl-Konrad, B., Weibel, M., Krutzsch, B., “Reactivity of NO/NO2–NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content”, Applied Catalysis B: Environmental, Volume 70, Issues 1–4, 2007, Pages 80-90, ISSN 0926-3373, https://doi.org/10.1016/j.apcatb.2005.10.041.

[72]. Colombo, M., Nova, I., Tronconi, E., “Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment”, Catalysis Today, Volume 197, Issue 1, 2012, Pages 243-255, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2012.09.002.

[73]. Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D., Bandl-Konrad, B., “NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction”, Catalysis Today, Volume 114, Issue 1, 2006, Pages 3-12, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2006.02.012.

[74]. Chen, P, Wang, J., “Nonlinear and adaptive control of NO/NO2 ratio for improving selective catalytic reduction system performance”, Journal of the Franklin Institute, Volume 350, Issue 8, 2013, Pages 1992-2012, ISSN 0016-0032, https://doi.org/10.1016/j.jfranklin.2013.05.020.

[75]. Bonfils, A., Creff, Y., Lepreux, O., Petit, N., “Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3”, Journal of Process Control, Volume 24, Issue 2, 2014, Pages 368-378, ISSN 0959-1524, https://doi.org/10.1016/j.jprocont.2013.08.010.

[76]. Wang, T., Baek, S., Jung, M., Yeo, G., “A Study of NH3 Adsorption/Desorption Characteristics in the Monolithic NH3-SCR Reactor”, Transactions of KSAE, Vol.14, No.3, pp. 125-132 (2006)

[77]. Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmann, W., Drochner, A., Vogel, H., “NH3- SCR on Fe zeolite catalysts – From model setup to NH3 dosing”, Chemical Engineering Journal, Volume 154, Issues 1–3, 2009, Pages 333-340, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2009.02.037.

[78]. Feng, T., Lü, L., “The characteristics of ammonia storage and the development of model-based control for diesel engine urea-SCR system”, Journal of Industrial and Engineering Chemistry, Volume 28, 2015, Pages 97-109, ISSN 1226-086X, https://doi.org/10.1016/j.jiec.2015.02.004.

[79]. Wang, T., Baek, S., Jung, M., Yeo, G., “A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System”, Transactions of KSAE, Vol. 24, No. 3, pp.302-309 (2016), http://dx.doi.org/10.7467/KSAE.2016.24.3.302

[80]. Willems, F., Cloudt, R., van den Eijnden, E., van Genderen, M., "Is Closed-Loop SCR Control Required to Meet Future Emission Targets?," SAE Technical Paper 2007-01-1574, 2007, https://doi.org/10.4271/2007-01-1574.

[81]. Zhao, J., Chen, Z., Hu, Y., Chen, H., “Urea-SCR Process Control for Diesel Engine Using Feedforward-Feedback Nonlinear Method”, IFAC-PapersOnLine, Volume 48, Issue 8, 2015, Pages 367-372, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2015.08.209.

Chapter2

[1]. Funayama, Y., Nakajima, H. and Shimokawa, K., "A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance," SAE Technical Paper 2016-01-0722, 2016, doi:10.4271/2016-01-0722.

[2]. Kimura, S., Matsui, Y., and Itoh, T., "Effects of Combustion Chamber Insulation on the Heat Rejection and Thermal Efficiency of Diesel Engines," SAE Technical Paper 920543, 1992, https://doi.org/10.4271/920543.

[3]. Shudo, T., Nabetani, S., Nakajima, Y., “Analysis of the degree of constant volume and cooling loss in a spark ignition engine fuelled with hydrogen”, SAGE journal Volume: 2 issue: 1, page(s): 81-92 Issue published: February 1, 2001, https://doi.org/10.1243/1468087011545361

[4]. Kojima, H., Kawanabe, H., Ishiyama, T., and Furutani, H., “LES Analysis of Fuel/Air Mixing and Heat Release Processes in a Diesel Spray”, SAE Technical Paper 2013-01-2537, 2013, https://doi.org/10.4271/2013-01-2537. [5]. Khalid, A., Yatsufusa, T., Miyamoto, T., Kawakami, J., Kidoguchi, Y., “Analysis of Relation between Mixture Formation during Ignition Delay Period and Burning Process in Diesel Combustion”, Small Engine Technology Conference & Exposition, 2009-32-0018

[6]. Cao, Z., Nishino, K., Mizuno, S. et al., “PIV measurement of internal structure of diesel fuel spray,” Experiments in Fluids 29, S211–S219, 2000, doi:10.1007/s003480070023

[7]. Kobashi, Y., Yokogawa, K., Miyabe, H., Hase, R., Kato, S., “Flow fields and turbulent characteristics in non-evaporating diesel sprays”, Atomization and Sprays, Volume 28, 2018 issue 8, doi:10.1615/AtomizSpr.2018026468

[8]. Zama, Y., Ochiai, W., Sugawara, K., Furuhata, T., and Arai, M., “Study on Mixing Process of Diesel Spray under High Ambient Gas Density Condition,” Atomization Sprays, vol. 23, no. 5, pp. 443–461, 2013. DOI: 10.1615/AtomizSpr.2013007347

[9]. Kojima, H., Kawanabe, H., Ishiyama, T., “A study on mixture formation process in a diesel spray using a PLIF method”, THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines

[10].Bruneux, G., “Liquid and vapor spray structure in high-pressure common rail diesel injection”, Atomization and Sprays, Volume 11, 2001 issue 5, page 24, doi: 10.1615/AtomizSpr.v11.i5.40

[11].Bruneaux, G., "Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence Part I: Free Jet," SAE Technical Paper 2005-01-2100, 2005, https://doi.org/10.4271/2005-01-2100

[12].Bottone, F., Kronenburg, A., Gosman, D. et al. The Numerical Simulation of Diesel Spray Combustion with LES-CMC. Flow Turbulence Combust 89, 651–673 (2012). https://doi.org/10.1007/s10494-012- 9415-y

Chapter3

[1]. Kimura, S., Aoki, O., Ogawa, H., Muranaka, S. et al., "New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines," SAE Technical Paper 1999-01-3681, 1999, doi:10.4271/1999-01-3681.

[2]. Reitz, R, D., Ogawa, H., Payri, R. et al., “IJER editorial: The future of the internal combustion engine” Int. J. Engine Research 21(1):3-10, 2020, doi:10.1177/1468087419877990.

[3]. Tanin, K., Wickman, D., Montgomery, D., Das, S. et al., "The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine," SAE Technical Paper 1999-01-0840, 1999, doi:10.4271/1999-01-0840.

[4]. Funayama, Y., Nakajima, H. and Shimokawa, K., "A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance," SAE Technical Paper 2016-01- 0722, 2016, doi:10.4271/2016-01-0722.

[5]. Kim, B., Yoon, W., Ryu, S. and Ha, J., "Effect of the Injector Nozzle Hole Diameter and Number on the Spray Characteristics and the Combustion Performance in Medium-Speed Diesel Marine Engines," SAE Technical Paper 2005-01-3853, 2005, doi:10.4271/2005-01-3853.

[6]. Pierpont, D. and Reitz, R., "Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance," SAE Technical Paper 950604, 1995, doi:10.4271/950604.

[7]. Sibendu, S., Anita I. R., Douglas E. L., Suresh A., “Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions”, Fuel 90(3):1267-1276, 2011, doi:10.1016/j.fuel.2010.10.048.

[8]. Matsson, A., Jacobsson, L. and Andersson, S., "The Effect of Elliptical Nozzle Holes on Combustion and Emission Formation in a Heavy-Duty Diesel Engine," SAE Technical Paper 2000-01-1251, 2000, doi:10.4271/2000-01-1251.

[9]. Numata A., Kumagai T., Nagae Y. and Osafune S., “Increase of Thermal Efficiency and Reduction of NOx Emissions in DI Diesel Engines”, Mitsubishi Heavy Industries, Ltd. Technical Review 38(3):136-140, 2001.

[10]. Bergstrand, P. and Denbratt, I., "Diesel Combustion with Reduced Nozzle Orifice Diameter," SAE Technical Paper 2001-01-2010, 2001, doi:10.4271/2000-01-2010.

[11]. Horibe, N., Komizo, T., Mamizuka, Y., Sumimoto, T., Kawanabe, H., Ishiyama, T., "Analysis of Mixture Formation Process in a Diesel Engine with Post Injection," SAE Technical Paper 2015-01- 1836, 2015, doi:10.4271/2015-01-1836.

[12]. Clément.C, Ulf A, Öivind.A, Rolf.E, Bengt Johansson, “Influence of jet-jet interactions on the lift-off length in an optical heavy-duty DI diesel engine”, Fuel 112:311-318, 2013, doi:10.1016/j.fuel.2013.05.021.

[13]. Higgins, B. and Siebers, D., "Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence," SAE Technical Paper 2001-01-0918, 2001, doi:10.4271/2001-01-0918.

[14]. Toda, N., Yamashita, H., Mashida, M., “PTV analysis of the entrained air into the diesel spray at highpressure injection”, Proc. SPIE 9232, International Conference on Optical Particle Characterization) 92320C, 2014, doi: 10.1117/12.2063632.

[15]. Fuyuto, T., Hattori, Y., Yamashita, H., and Mashida, M., "Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle," SAE Int. J. Engines 9(1):71- 83, 2016, doi:10.4271/2015-01-1837.

[16]. Fuyoto,T., Hattori,Y., Yamashita,H., Toda,N., Mashida,M., “Set-off length reduction by backward flow of hot burned gas surrounding high-pressure diesel spray flame from multi-hole nozzle”, Int. J. Engine Research 18(3):173-194, 2016, doi:10.1177/1468087416640429.

[17]. Bazyn, T., and Koci, C., "The Effect of Jet Spacing on the Combustion Characteristics of Diesel Sprays," Proceedings of THIESEL 2014 C.2.4, 2014.

[18]. 藤本元,田辺秀明,國吉光,佐藤豪,ディーゼル噴霧の性状に関する研究,日本機械学会 論文集(B 編)47 巻 418 号

[19]. Siebers, D. and Higgins, B., "Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions," SAE Technical Paper 2001-01-0530, 2001, doi:10.4271/2001-01-0530.

[20]. Siebers, D., "Liquid-Phase Fuel Penetration in Diesel Sprays," SAE Technical Paper 980809, 1998, doi:10.4271/980809.

[21]. Yamauchi, J., Dong, P., Nishida, K., and Ogata, Y., "Effects of Hole Diameter and Injection Pressure on Fuel Spray and Its Evaporation Characteristics of Multi-Hole Nozzle for Diesel Engine," SAE Technical Paper 2017-01-2305, 2017, doi:10.4271/2017-01-2305.

Chapter4

[1]. Katsura, N., Saito, M., Senda, J., and Fujimoto, H., "Characteristics of a Diesel Spray Impinging on a Flat Wall," SAE Technical Paper 890264, 1989, https://doi.org/10.4271/890264.

[2]. Li, S., Kamimoto, T., Kobori, S., and Enomoto, Y., "Heat Transfer from Impinging Diesel Flames to the Combustion Chamber Wall," SAE Technical Paper 970896, 1997, https://doi.org/10.4271/970896.

[3]. Zama, Y., Odawara, Y., Furuhata, T., “Experimental Investigation on Velocity inside a Diesel Spray after Impingement on a Wall”, Fuel 203, 2017, 757–763, https://doi.org/10.1016/j.fuel.2017.04.099

[4]. Mahmud, R., Kurisu, T., Nishida, K., Ogata, Y., Kanzaki, J., Akgol, O., “Effects of Injection Pressure and Impingement distance on Flat-Wall Impinging Spray Flame and its Heat Flux under Diesel Engine-like Condition” Advances in Mechanical Engineering, 2019, Vol. 11(7) 1–15, https://doi.org/10.1177/1687814019862910

[5]. Jo, H., Kawai, Y., Horibe, N., Hayashi, J. et al., "A Study on Diesel Spray Flame by Time-Resolved PIV with Chemiluminescence of OH*," SAE International Journal of Advances and Current Practices in Mobility, 4(2):592-601, 2022, https://doi.org/10.4271/2021-01-1167.

Chapter5

[1]. Liang, Y., Ding, X., Dai, J., Zhao, M., Zhong, L., Wang, J., Chen, Y., “Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce”, Catalysis Today, Volume 327, 2019, Pages 64-72, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2018.06.008.

[2]. Salman, A., Enger, B., Auvray, X., Lødeng, R., Menon, M., Waller, D., Rønning, M., “Catalytic oxidation of NO to NO2 for nitric acid production over a Pt/Al2O3 catalyst”, Applied Catalysis A: General, Volume 564, 2018, Pages 142-146, ISSN 0926-860X, https://doi.org/10.1016/j.apcata.2018.07.019.

[3]. Tighe, C., Twigg, M., Hayhurst, A., Dennis, J., “The kinetics of oxidation of Diesel soots by NO2”, Combustion and Flame, Volume 159, Issue 1, 2012, Pages 77-90, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2011.06.009.

[4]. Jiao, P., Li, Z., Shen, B., Zhang, W., Kong, X., Jiang, R., “Research of DPF regeneration with NOx-PM coupled chemical reaction”, Applied Thermal Engineering, Volume 110, 2017, Pages 737-745, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2016.08.184.

[5]. Radojevic, M.m “Reduction of nitrogen oxides in flue gases.”, Environmental Pollution, Volume 102, 1998, 685–689.

[6]. Iwamoto, M., Yahiro, H., Tanda, K. “Catalytic decomposition of nitrogen-monoxide over copper ionexchanged zeolites.” Studies in Surface Science and Catalysis, Volume 44, 1989, Pages 219- 226, https://doi.org/10.1016/S0167-2991(09)61296-9

[7]. Shirahama, N., Mochida, I., Korai, Y., Choi, K., Enjoji, T., Shimohara, T., Yasutake, A., “Reaction of NO with urea supported on activated carbons”, Applied Catalysis B: Environmental, Volume 57, Issue 4, 26 May 2005, Pages 237-245, https://doi.org/10.1016/j.apcatb.2004.04.004

[8]. Traa, Y., Burger, B., Weitkamp, J., “Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons.”, Microporous and Mesoporous Materials, Volume 30, Issue 1, August 1999, Pages 3-41, https://doi.org/10.1016/S1387-1811(99)00030-X

[9]. Dumesic, J., Topsøe, N., Topsøe, H., Chen, Y., Slabiak, T., “Kinetics of Selective Catalytic Reduction of Nitric Oxide by Ammonia over Vanadia/Titania”, Journal of Catalysis, Volume 163, Issue 2, October 1996, Pages 409-417, https://doi.org/10.1006/jcat.1996.0342

[10]. Madia, G., “Measures to enhance the NOx conversion in urea-SCR systems for automotive applications”, Diss. ETH No 14595

[11]. Gieshoff, J., Schäfer-Sindlinger, A., Spurk, P., van den Tillaart, J., Garr, G., “Improved SCR Systems for Heavy Duty Applications,” SAE Technical Paper 2000-01-0189, 2000, https://doi.org/10.4271/2000-01-0189.

[12]. Liu, Y., Liu, Z., Mnichowicz, B., Harinath, A., Li, H., Bahrami, B., “Chemical deactivation of commercial vanadium SCR catalysts in diesel emission control application”, Chemical Engineering Journal, Volume 287, 1 March 2016, Pages 680-690, https://doi.org/10.1016/j.cej.2015.11.043

[13]. Colombo, M., Nova, I., Tronconi, E., “A comparative study of the NH3-SCR reactions over a Cuzeolite and a Fe-zeolite catalyst”, Catalysis Today, Volume 151, Issues 3–4, 19 June 2010, Pages 223-230, https://doi.org/10.1016/j.cattod.2010.01.010

[14]. Lu¨ L., Wang L., “Model-based optimization of parameters for a diesel engine SCR system” International Journal of Automotive Technology, Volume 14, 2013, pages13–18, https://doi.org/10.1007/s12239-013-0002-6

[15]. Fu, M., Ge, Y., Wang, X., Tan, J., Yu, L., Liang, B., “NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns”, Science of The Total Environment, Volumes 452–453, 1 May 2013, Pages 222-226, https://doi.org/10.1016/j.scitotenv.2013.02.076

[16]. Willems, F., Cloudt, R., van den Eijnden, E., van Genderen, M., Verbeek, R., de Jager, B, Boomsma, W., den Heuvel, I., "Is Closed-Loop SCR Control Required to Meet Future Emission Targets?," SAE Technical Paper 2007-01-1574, 2007, https://doi.org/10.4271/2007-01-1574.

[17]. Bonfils, A., Creff, Y., Lepreux, O., Petit, N., “Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3” IFAC Proceedings Volumes, Volume 45, Issue 15, 2012, Pages 738-743, https://doi.org/10.3182/20120710-4-SG-2026.00088

[18]. Song, Q. and Zhu, G., “Model-based closed-loop control of urea SCR exhaust aftertreatment system for diesel engine”, SAE Technical Paper 2002-01-0287, 2002, https://doi.org/10.4271/2002-01-0287.

[19]. Ham, Y., Park, S., “A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System”, Transactions of the KSAE, Volume 24 Issue 3, 2016, Pages.302-309, https://doi.org/10.7467/ksae.2016.24.3.302

[20]. Schär, C., Onder, C., Geering, H., “Modeling and control of an SCR system”, IFAC Proceedings Volumesm, Volume 37, Issue 22, April 2004, Pages 355-360 , https://doi.org/10.1016/S1474- 6670(17)30369-5

[21]. Wang, T., Baek, S., Jung M., Yeo, G., “A Study of NH3 Adsorption/Desorption Characteristics in the Monolithic NH3-SCR Reactor,” Transactions of the KSAE, Volume 14 Issue 3, 2006, Pages.302-309

[22]. Chen, P., Wang, J., “Nonlinear and adaptive control of NO/NO2 ratio for improving SCR system performance”, Journal of the Franklin Institute, Volume 350, Issue 8, October 2013, Pages 1992- 2012, https://doi.org/10.1016/j.jfranklin.2013.05.020

[23]. Mok, Y., Yoon , E., Dors, M., Mizeraczyk, J., “Optimum NO2/NOx ratio for efficient Selective Catalytic Reduction”, acta physica slovaca, Volume 55, 2005, No.5, pages 467-478.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る