リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「<Original Papers> A theoretical analysis of the atmospheric gravity wave that connects the thermosphere and the troposphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A theoretical analysis of the atmospheric gravity wave that connects the thermosphere and the troposphere

田中, 博 HAGIWARA, Misako 筑波大学

2021.01.05

概要

The purpose of this study is to theoretically analyze how atmospheric gravity waves (AGWs) generated in the thermosphere propagate down to the troposphere, using an expansion in three-dimensional normal mode functions (3-D NMF). The 3-D NMF is an orthonormal expansion basis for observed data. Using linear primi- tive equations in a spherical coordinate system, we set the initial variables of zonal wind, meridional wind, and geopotential height perturbations. With the initial state of waves and performing analytical time integration up to 24 hours, it is possible to express the theoretical wave propagations according to the linear theory. When the im- pact of geopotential height is placed at high latitudes and high altitudes assuming a solar activity change of aurora oval, we find that the impact can propagate downward to the troposphere as attenuating gravity waves. It is found that the wave propagations and reflections at the surface create an anti-node of geopotential at the bottom of the atmosphere corresponding to the vertical width of the ini- tial state of the impact. On the other hand, standing waves in temperature create a node at the ground surface. The characteristic vertical structure near the ground surface comes from the lower boundary condition of the vertical structure functions. Due to the standing waves generated in the lower troposphere, the atmospheric stability is al- tered by the passage of the gravity waves in the meridion- al direction. Thus, it is considered that the gravity waves can affect the development of cyclones by changing the stability parameters. Waves propagating from higher alti- tudes reach the troposphere, but the amplitude of AGWs has been reduced from about 1,000 to 10,000 times. Since the temperature response in the thermosphere due to the aurora oval is estimated as hundreds to a thousand K, there is a response of 0.01 to 0.1 K when the waves reach to the troposphere.

この論文で使われている画像

参考文献

Chimonas, G. and C. O. Hines (1970): Atmospheric grav- ity waves launched by auroral currents, Planet. Space Sci., 18, 565-582.

Crowley, G. and P. J. S. Williams (1987): Observations of the source and propagation of atmospheric gravity waves, Nature, 328, 231-233.

Francis, S. H. (1974): A theory of medium-scale traveling ionospheric disturbances. J. Geophys. Res., 79, 5245- 5260.

Francis, S. H. (1975): Global propagation of atmospheric gravity waves: A review. J. Atmos. Terr. Phys., 37, 1011-1054.

Fujita, R. and H. L. Tanaka (2007): Statistical analysis on the relationship between solar and geomagnetic activities and the Arctic Oscillation. J. Meteor. Soc. Japan, 85, 909-918.

Gray, L. J., J. Beer, M. Geller, J. D. Haigh, M. Lock- wood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G. A. Meehl, D. Shindell, B. van Geel, and W. White (2010): Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

Holton, J. R. (1979): An introduction to dynamic meteor-ology. Academic Press., 23, 391pp.

Idenden, D. W. (1998): The thermospheric effects of a rapid polar cap expansion. Ann. Geophysicae, 16(10), 1380-1391.

Kamae, Y., T. Kawana, M. Oshiro, and H. Ueda (2017): Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study. Prog. Earth Planet. Sci., 4, 22.

Kodera, K. and Y. Kuroda (2002): Dynamical response to the solar cycle. J. Geophys. Res., 107(D24), 4749, doi:10.1029/2002JD002224.

Kristjánsson, J. E., A. Staple, J. Kristiansen, and E. Kaas (2002): A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett., 29(23), 2107, doi:10.1029/2002GL015646.

Matsuno, T. (1982): A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan, 60, 215-226.

Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990): Thermospheric gravity waves: Observations and interpretation using the transfer function model. Space Sci. Rev., 54, 297- 375.

Mayr, H. G., E. R. Talaat, and B. C. Wolven (2013): Global propagation of gravity waves generated with the whole atmosphere transfer function model. J. At- mos. Sol. Terr. Phys., 104, 7-17.

Ney, E. P. (1959): Cosmic radiation and the weather. Na-ture, 183, 451-452.

Ogura, Y. (1997): Basic theory of meso-scale meteorol- ogy. University of Tokyo Press., Tokyo, 215pp (in Japanese).

Oyama, S., and B. J. Watkins (2011): Generation of at- mospheric gravity waves in the polar thermosphere in response to auroral activity, Space Science Reviews, 168(1-4), 463-473, doi:10.1007/s11214-011-9847-z.

Pierce, J. R., and P. J. Adams (2009): Can cosmic rays af-fect cloud condensation nuclei by altering new parti- cle formation rates? Geophys. Res. Lett., 36, L09820, doi:10.1029/2009GL037946.

Prikryl, P., D. B. Muldrew, and G. J. Sofko (2003): High-speed solar wind, auroral electrojets and atmospheric gravity waves: A link to the Earth’s atmosphere, in Proceedings of the ISCS 2003 Symposium: Solar Variability as an Input to the Earth’s Environment,

Tatranska Lomnica, ESA SP-535, 371-376.

Prikryl, P., K. Iwao, D. B. Muldrew, V. Rušin, M. Ryban- ský, and R. Bruntz (2016): A link between high- speed solar wind streams and explosive extratropical cyclones. J. Atmos. Sol. Terr. Phys., 149, 219-231.

Prikryl, P., R. Bruntz, T. Tsukijihara, K. Iwao, D. B. Muldrew, V. Rušin, M. Rybanský, M. Turňa, and P. Šťastný (2018): Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control. J. Atmos. Sol. Terr. Phys. 171, 94- 110.

Richmond, A. D. and S. Matsushita (1975): Thermospher-ic response to a magnetic substorm. J. Geophys. Res., 80(19), 2839-2850.

Richmond, A. D. (1978): Gravity wave generation, prop- agation, and dissipation in the thermosphere, J. Geo- phys. Res., 83, 4131-4145.

Sato, K., R. Yasui, and Y. Miyoshi (2018): The momen-tum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: Contributions of different wave types and in situ generation of Rossby waves, J. Atmos. Sci., 75, 3613-3633, doi:10.1175/JASD-17-0336.1.

Svensmark, H., and E. Friis-Christensen (1997): Varia-tions of cosmic ray flux and global cloud coverage?— a missing link in solar-climate relationships. J. At- mos. Terr. Phys., 59, 1225-1232, doi:10.1016/S1364-6826(97)00001-1.

Tanaka, H. L. (1985): Global energetics analysis by ex- pansion into three dimensional normal mode func- tions during the FGEE winter. J. Meteor. Soc. Japan, 42, 950-960.

Tanaka, H. L. and M. Hagiwara (2019): Geostrophic ad-justment of subtropical jet on a sphere by the analyti- cal solution. Abstract in Fall Meeting of Meteor. Soc. Japan (in Japanese).

Tanaka, T. (1979): Global structure and dynamics of the thermo-ionospheres, Rev. Radio Res. Labs., 25(134), 265-309 (in Japanese).

Terasaki, K. and H.L. Tanaka (2007): An analysis of the 3D atmospheric energy spectra and interactions us- ing analytical vertical structure functions and two re-analyses. J. Meteor. Soc. Japan, 85, 785-796.

Tsuda, T. (2011): Characteristics of atmospheric gravity waves observed with the MU (Middle and Upper at- mosphere) radar and GPS radio, Nagare, 30(5), 377- 384.

Tsuda, T. (2014): Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning Sys- tem) radio occultation, Proc Jpn Acad Ser B Phys Biol Sci., 90(1),12-27, doi:10.2183/pjab.90.12

Vadas, S. L., D. C. Fritts, and M. J. Alexander (2003): Mechanism for the generation of secondary waves in wave breaking regions. J. Atmos. Sci., 60, 194-214.

Wilcox, J. M., P. H. Scherrer, L. Svalgaard, W. O. Rob- erts, and R. H. Olson (1973): Solar magnetic sector structure: Relation to circulation of the earth’s atmos- phere. Science, 180, 185-186.

Xu, J., A. K. Smith, W. Wang, G. Jiang, W. Yuan, H. Gao, J. Yue, B. Funke, M. López-Puertas, and J. M. Rus- sell III (2013): An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere. J. Geophys. Res. Space Physics, 118, 7410-7425, doi:10.1002/2013JA019144.

Yasui, R., K. Sato, and Y. Miyoshi (2018): The momen-tum budget in the stratosphere, mesosphere, and lower thermosphere. Part II: The in situ generation of gravity waves. J. Atmos. Sci., 75, 3635-3651, doi:10.1175/JAS-D-17-0337.1.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る