リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Seroepidemiological study of Toxoplama gondii in small ruminants (sheep and goat) in different provinces of Mongolia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Seroepidemiological study of Toxoplama gondii in small ruminants (sheep and goat) in different provinces of Mongolia

Pagmadulam Baldorj Myagmarsuren Punsantsogvoo Yokoyama Naoaki Battsetseg Badgar Nishikawa Yoshifumi 帯広畜産大学

2021.02.01

概要

Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii. Consumption of raw or undercooked meat is the main risk factor for acquiring T. gondii infection in humans. Meat and meat products derived from goats and sheep are mainly consumed in Mongolia; however, there is limited epidemiological information on T. gondii infection in small ruminants in this country. The main objective of the present study was to investigate the seroprevalence of T. gondii in sheep and goats in Mongolia. The seroprevalence of T. gondii IgG antibodies was determined by an indirect enzyme-linked immunosorbent assay based on the recombinant antigens of dense granule protein 7 of T. gondii. A total of 1078 goat and 882 sheep blood samples were collected from 17 of 21 provinces and the capital city of Mongolia. Overall, the seroprevalence of T. gondii among the goat and sheep samples was 32% and 34.8%, respectively. The seroprevalence among goat samples was significantly higher in western (42.7%) and eastern (45.6%) regions compared with other regions (24%). Additionally, the seroprevalence among sheep was significantly higher in eastern regions (55.4%) compared with other regions (26%–33%). Age, but not sex, was considered a risk factor for T. gondii seropositivity in goats, whereas no statistically significant differences were observed in sheep for age or sex. In conclusion, the present study demonstrates the high seroprevalence of T. gondii in small ruminants in Mongolia. Our results highlight that country-wide control measures are required to minimize infections in livestock.

この論文で使われている画像

参考文献

260

[1] J.P. Dubey, Toxoplasmosis of Animals and Humans, 2nd ed. CRC Press, Boca Raton.

261

Florida. 1–313, (2010).

262

[2] S.P. Asthana, C.N. Macpherson, S.H. Weiss, R. Stephens, T.N. Denny, R.N. Sharma, J.P.

263

Dubey, Seroprevalence of Toxoplasma gondii in pregnant women and cats Grenada, West

264

Indies. J. Parasitol. 92 (2006) 644-645.

265

266

267

268

[3] J.P. Dubey, J.L. Jones Toxoplasma gondii infection in humans and animals in the United

States, Int. J. Parasitol. 38 (2008) 1257-1278.

[4] A.M. Tenter, A.R. Heckeroth, L.M. Weiss, Toxoplasma gondii: from animals to humans,

Int. J. Parasitol. 30 (2000) 1217–1258.

269

[5] D. Buxton, Toxoplasmosis: a review. J. Roy. Soc. Med. 83 (1990) 509-511.

270

[6] J.P. Dubey, Toxoplasmosis in sheep-The last 20 years. Vet. Parasitol. 163 (2009) 1-14.

271

[7] B. Tumurjav, M.A. Terkawi, H. Zhang, G. Zhang, H. Jia, Y.K. Goo, J. Yamagishi, Y.

272

Nishikawa, I. Igarashi, C. Sugimoto, X. Xuan, Serodiagnosis of ovine toxoplasmosis in

273

Mongolia by an enzyme-linked immunosorbent assay with recombinant Toxoplasma

274

gondii matrix antigen 1, Japan. J. Vet. Res. 58 (2010) 111-119.

275

[8] M. Brown, M.R. Lappin, L.J. Brown, B. Munkhtsog, F.W. Swanson, Exploring the

276

ecological basis for extreme susceptibility of Pallas’ cats (Octolobus Manul) to fatal

277

Toxoplasmosis, J. Wildl. Dis. 41 (2005) 691-700.

278

[9] B. Pagmadulam, P. Myagmarsuren, R.M. Fereig, M. Igarashi, N. Yokoyama, B. Battsetseg,

279

Y. Nishikawa, Seroprevalence of Toxoplasma gondii and Neospora caninum infections in

280

cattle in Mongolia, Vet. Parasitol: Reg. Stud. Rep. 14 (2018) 11-17.

13

281

[10] M.A. Terkawi, K. Kameyama, N.H. Rasul, X. Xuan, Y. Nishikawa, Development of an

282

immunochromatographic assay based on dense granule protein 7 for serological detection

283

of Toxoplasma gondii infection, Clin. Vaccine. Immunol. 20 (2013) 596–601.

284

[11]Mongolian

Statistical

Information

Service,

285

https://www.1212.mn/stat.aspx?LIST_ID=976_L10_1, 2018 (Accessed 15 February

286

2019).

287

288

289

290

[12] National Statistics Office of Mongolia, http://mofa.gov.mn/exp/blog/7/3#, 2017

(Accessed 4 July 2018).

[13] Multicriteria-based ranking for risk management of food-borne parasites, FAO/WHO,

Microbiological Risk Assessment Series, www.fao.org, 2014.

291

[14] M. Ichikawa-Seki, A. Guswanto, P. Allamanda, E.S. Mariamah, P.E. Wibowo, I. Igarashi,

292

Y. Nishikawa, Seroprevalence of antibody to TgGRA7 antigen of Toxoplasma gondii in

293

livestock animals from western Jawa, Indonesia, Parasitol. Int. 64 (2015) 484-486.

294

[15] R.M. Fereig, H.Y.A.H. Mahmoud, S.G.A. Mohamed, M.R. AbouLaila, A. Abdel-Wahab,

295

S.A. Osman, S.A. Zidan, S.A. El-Khodary, A.E.A. Mohamed, Y. Nishikawa,

296

Seroprevalence and epidemiology of Toxoplasma gondii in farm animals in different

297

regions of Egypt. Vet. Parasitol: Reg. Stud. Rep. 3–4 (2016) 1–6.

298

[16] N. Tzanidakis, P. Maksimov, F.J. Conraths, E. Kiossis, C. Brozos, S. Sotiraki, G. Schares,

299

Toxoplasma gondii in sheep and goats: Seroprevalence and potential risk factors under

300

dairy husbandry practices, Vet. Parasitol. 190 (2010) 40-348.

301

302

[17] D. Hill, J.P. Dubey, Toxoplasma gondii as a parasite in food, Analysis and control,

Microbiol. Spect. 4 (2016).

14

303

[18] E. Iacobucci, N. S. Taus, M. W. Ueti, L. Sukhbaatar, Z. Bastsukh, S. Papageorgiou, H.

304

Fritz, Detection and genotypic characterization of Toxoplasma gondii DNA within the

305

milk of Mongolian livestock, Parasitol. Res. (2019) 1-4.

306

307

[19] G. Hide, Role of vertical transmission of Toxoplasma gondii in prevalence of infection,

Expert. Rev. Anti. Infect. Ther. 14 (2016) 335–344.

308

[20] H. Dong, R. Su, Y. Lu, M. Wang, J. Liu, F. Jian, Y. Yang, Prevalence, risk factors, and

309

genotypes of Toxoplasma gondii in food animals and humans (2000-2017) from China,

310

Front. Microbiol. 9 (2018) 2108.

311

[21] E.A. Shuralev, N.D. Shamaev, M.N. Mukminov, K. Nagamune, Y. Taniguchi, T. Saito,

312

K. Kitoh, M.I. Arleevskaya, A.Y. Fedetova, D.R. Abdilmanova, N.M. Aleksandrova, M.A.

313

Efimova, A.I. Yarullin, A.R. Valeeva, K.S. Khaertynov, Y. Takashima, Toxoplasma

314

gondii seroprevalence in goat, cats and humans in Russia, Parsitol. Int. 67 (2017)112-114.

315

[22] J.L. Jones, D. Kruszon-Moran, M. Wilson, G. McQuillan, T. Navin, J.B. McAuley

316

Toxoplasma gondii Infection in the United States: Seroprevalence and Risk Factors, Am.

317

J. Epidemiol. 154 (2001) 357–365.

318

[23] A.L. Gazzonis, F. Veronesi, A.R. Di Cerbo, S.A. Zanzani, G. Molineri, I. Moretta, A.

319

Moretti, D.P. Fioretti, A. Invernizzi, M.T. Manfred, Toxoplasma gondii in small ruminants

320

in Northern Italy-prevalence and risk factors, Ann. Agric. Environ. Med. 22 (2015) 62-68.

321

[24] F.J.R. Magalhaes, M. Ribeiro-Andrade, A.M. De Alcantara, J.W. Pinheiro Júnior, M.J. De

322

Sena, W.J.N. Porto, R.F. Rafael Da Costa Vieira, R.A. Mota, Risk factors for Toxoplasma

323

gondii infection in sheep and cattle from Fernando de Noronha Island, Brazil, Braz. J. Vet.

324

Parasitol. 25 (2016) 511-515.

15

325

326

327

328

329

330

[25] B.C. Walton, I. Arjona, B.M. Benchoff, Relationship of Toxoplasma antibodies to altitude,

Am. J. Trop. Med. Hyg. 15 (1966) 492–5.

[26] National Agency Meteorology and the Environmental monitoring, Ulaanbaatar, Mongolia.

http://tsag-agaar.gov.mn/eng/atmosphere/ (Accessed 22 April 2019).

[27] F. Robert-Gangneuxa, M-L. Dardé, Epidemiology of and Diagnostic Strategies for

Toxoplasmosis, Clin. Microbiol. Rev. 25 (2012) 264 –296.

331

[28] E.L. Clark, J. Munkhbat, S. Dulamtseren, J.E.M. Baillie, N. Batsaikhan, R. Samiya, M.

332

Stubbe, Mongolian Red List of Mammals. Regional Red List Series Vol. 1. Zoological

333

Society of London, London. (in English and Mongolian), (2006) 94-100.

334

335

[29] Report of national statistics office of Mongolia, Introduction of agricultural sector, (2018)

Ulaanbaatar, Mongolia.

336

16

337

Figure legends

338

Fig. 1. Geographical distribution of T. gondii in Mongolian goats included in this study.

339

Infection rates are indicated as follows: white 0%–30%, gray 30.1%–50%, and light blue

340

>50%.

341

342

Fig. 2. Geographical distribution of T. gondii in Mongolian sheep included in this study.

343

Infection rates are indicated as follows: white 0%–30%, gray 30.1%–50%, and light blue

344

>50%.

345

17

Figure 1

Click here to access/download;Figure;Figure 1_revised.tif

Figure 2

Click here to access/download;Figure;Figure 2_revised.tif

Table 1

Click here to access/download

Table

Table 1.docx

Table 2

Click here to access/download

Table

Table 2.docx

Table 3

Click here to access/download

Table

Table 3.docx

Table 4

Click here to access/download

Table

Table 4.docx

...

参考文献をもっと見る