リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「First detection of Theileria equi in free-roaming donkeys (Equus africanus asinus) in Sri Lanka」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

First detection of Theileria equi in free-roaming donkeys (Equus africanus asinus) in Sri Lanka

Ahedor Believe Kothalawala Hemal Kanagaratnam Ratnam Vimalakumar Singarayar Caniciyas Otgonsuren Davaajav Tuvshintulga Bumduuren Batmagnai Enkhbaatar Silva Seekkuge Susil Priyantha Sivakumar Thillaiampalam Yokoyama Naoaki 帯広畜産大学

2022.08.08

概要

Equine piroplasmosis (EP) is a tick-borne disease caused by Theileria equi and Babesia caballi in equids, including horses, donkeys, zebras, and mules. It is globally endemic with significant economic impact on the equine industry. Infected animals may serve as carriers, and they may be a source of infection for ticks, thereby posing a great challenge for disease management. Sri Lanka is a tropical country, where infections by various tick-borne parasites are common among livestock animals. However, infections by T. equi and B. caballi remain unstudied in Sri Lanka. Therefore, in the present study, we conducted an epidemiological survey to investigate the presence of T. equi and B. caballi in apparently healthy free-roaming donkeys. Blood samples were randomly taken from 111 donkeys in Mannar (n = 100) and Kilinochchi (n = 11) districts in Sri Lanka. Thin blood smears were prepared from the blood samples and subjected to microscopic examination. Additionally, blood DNA samples were prepared and screened for T. equi and B. caballi infections using species-specific PCR assays. Our results showed that 64 (57.7%) and 95 (85.6%) of the donkeys were positive for T. equi by microscopy and PCR, respectively. However, all samples were negative for B. caballi. Phylogenetic analysis of the T. equi 18S rRNA sequences detected two distinct genotypes, namely C and D. To our knowledge, this is the first report of T. equi in Sri Lanka and of genotype C in donkeys. The present study highlights the importance of monitoring the shrinking donkey population in Sri Lanka owing to EP caused by T. equi.

この論文で使われている画像

参考文献

Alhassan, A., Pumidonming, W., Okamura, M., Hirata, H., Battsetseg, B., Fujisaki, K., Yokoyama, N., Igarashi, I., 2005. Development of a single-round and multiplex PCR method for the simultaneous detection of Babesia caballi and Babesia equi in horse blood. Vet. Parasitol. 129, 43–49. https://doi.org/10.1016/j.vetpar.2004.12.018

Allsopp, M.T., Lewis, B.D., Penzhorn, B.L., 2007. Molecular evidence for transplacental transmission of Theileria equi from carrier mares to their apparently healthyfoals. Vet. Parasitol. 148, 130–6.

Barcia, J.J., 2007. The Giemsa stain: its history and applications. Int. J. Surg. Pathol. 15, 292–296. https://doi.org/10.1177/1066896907302239

Bashiruddin, J.B., Cammà, C., Rebêlo, E., 1999. Molecular detection of Babesia equi and Babesia caballi in horse blood by PCR amplification of part of the 16S rRNA gene. Vet. Parasitol. 84, 75–83. https://doi.org/10.1016/S0304-4017 (99)00049-7

Bishop, R.P., Kappmeyer, L.S., Onzere, C.K., Odongo, D.O., Githaka, N., Sears, K.P., Knowles, D.P., Fry, L.M., 2020. Equid infective Theileria cluster in distinct 18S rRNA gene clades comprising multiple taxa with unusually broad mammalian host ranges. Parasites Vectors 13, 261. https://doi.org/10.1186/s13071-020-04131-0

Bhoora, R., Buss, P., Guthrie, A.J., Penzhorn, B.L., Collins, N.E., 2010b. Genetic diversity of piroplasms in plains zebra (Equus quagga burchellii) and Cape mountain zebra (Equus zebra zebra) in South Africa. Vet. Parasitol. 174, 145–149. https://doi.org/10.1016/j.vetpar.2010.08.014

Bhoora, R.V., Collins, N.E., Schnittger, L., Troskie, C., Marumo, R., Labuschagne, K., Smith, R.M., Dalton, D.L., Mbizeni, S., 2020. Molecular genotyping and epidemiology of equine piroplasmids in South Africa. Ticks Tick Borne Dis. 11, 101358.

https://doi.org/https://doi.org/10.1016/j.ttbdis.2019.101358

Bhoora, R., Franssen, L., Oosthuizen, M.C., Guthrie, A.J., Zweygarth, E., Penzhorn, B.L., Jongejan, F., Collins, N.E., 2009. Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa. Vet. Parasitol. 159, 112–120. https://doi.org/10.1016/j.vetpar.2008.10.004

Bhoora, R., Quan, M., Matjila, P.T., Zweygarth, E., Guthrie, A.J., Collins, N.E., 2010. Sequence heterogeneity in the equi merozoite antigen gene (ema-1) of Theileria equi and development of an ema-1-specific TaqMan MGBTM assay for the detection of T. equi. Vet. Parasitol. 172, 33–45. https://doi.org/https://doi.org/10.1016/j.vetpar.2010.04.025

Bhoora, R., Quan, M., Zweygarth, E., Guthrie, A.J., Prinsloo, S.A., Collins, N.E., 2010a. Sequence heterogeneity in the gene encoding the rhoptry-associated protein-1 (RAP-1) of Babesia caballi isolates from South Africa. Vet. Parasitol. 169, 279–288.

Campanella, J.J., Bitincka, L., Smalley, J., 2003. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29. https://doi.org/10.1186/1471-2105-4-29

Chhabra, S., Ranjan, R., Uppal, S.K., Singla, L.D., 2012. Transplacental transmission of Babesia equi (Theileria equi) from carrier mares to foals. J. Parasit. Dis. 36, 31-33. doi:10.1007/s12639-011-0072-1

Coultous, R.M., McDonald, M., Raftery, A.G., Shiels, B.R., Sutton, D.G.M., Weir, W., 2020. Analysis of Theileria equi diversity in the Gambia using a novel genotyping method. Transbound Emerg. Dis. 67, 1213-1221. https://doi.org/10.1111/tbed.13454

De Sousa, K.C.M., Fernandes, M.P., Herrera, H.M., Freschi, C.R., Machado, R.Z., André, M.R., 2018. Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland, Brazil. Ticks Tick Borne Dis. 9, 245–253. https://doi.org/10.1016/j.ttbdis.2017.09.010

De Waal, D.T., 1990. The transovarial transmission of Babesia caballi by Hyalomma truncatum. Onderstepoort J. Vet. Res. 57, 99–100.

Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

Fritz, D., 2010. A PCR study of piroplasms in 166 dogs and 111 horses in France (March 2006 to March 2008). Parasitol. Res. 106, 1339–1342. https://doi.org/10.1007/s00436-010-1804-3.

Ganguly, S., 2018. Ending the Sri Lankan civil war. Daedalus. 147, 78–89. https://doi.org/10.1162/DAED_a_00475

Hawkins, E., Kock, R., McKeever, D., Gakuya, F., Musyoki, C., Chege, S.M., Mutinda, M., Kariuki, E., Davidson, Z., Low, B., Skilton, R.A., Njahira, M.N., Wamalwa, M., Maina, E., 2015. Prevalence of Theileria equi and Babesia caballi as well as the identification of associated ticks in sympatric grevy’s zebras (Aquus grevyi) and donkeys (Equus africanus asinus) in northern Kenya. J. Wildl. Dis. 51, 137–147. https://doi.org/10.7589/2013-11-316

Houwen, B., 2002. Blood film preparation and staining procedures. Clin. Lab. Med. 22, 1–14. https://doi.org/https://doi.org/10.1016/S0272-2712(03)00064-7

Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436

Knowles, D.P., Kappmeyer, L.S., Haney, D., Herndon, D.R., Fry, L.M., Munro, J.B., Sears, K., Ueti, M.W., Wise, L.N., Silva, M., Schneider, D.A., Grause, J., White, S.N., Tretina, K., Bishop, R.P., Odongo, D.O., Pelzel-McCluskey, A.M., Scoles, G.A., Mealey, R.H., Silva, J.C., 2018. Discovery of a novel species, Theileria haneyi n. sp., infective to equids, highlights exceptional genomic diversity within the genus Theileria: implications for apicomplexan parasite surveillance. Int. J. Parasitol. 48, 679–690. https://doi.org/https://doi.org/10.1016/j.ijpara.2018.03.010

Kumar, S., Kumar, R., Sugimoto, C., 2009. A perspective of Theileria equi infections in donkeys. Jpn. J. Vet. Res. 56, 171–180.

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

Laus, F., Spaterna, A., Faillace, V., Veronesi, F., Ravagnan, S., Beribé, F., Cerquetella, M., Meligrana, M., Tesei, B., 2015. Clinical investigation on Theileria equi and Babesia caballi infections in Italian donkeys. BMC Vet. Res. 11, 100. https://doi.org/10.1186/s12917-015- 0411-z

Liu, Q., Meli, M.L., Zhang, Y., Meili, T., Stirn, M., Riond, B., Weibel, B., Hofmann-Lehmann, R., 2016. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland. Vet. Parasitol. 221, 24–29. https://doi.org/10.1016/j.vetpar.2016.03.003

Liyanaarachchi, D.R., Rajakaruna, R.S., Dikkumbura, A.W., Rajapakse, R.P., 2015. Ticks infesting wild and domestic animals and humans of Sri Lanka with new host records. Acta trop. 142, 64–70. https://doi.org/10.1016/j.actatropica.2014.11.001

Liyanage, J., 2014. Donkey management and welfare strategy: Mannar 2012–2022. Bridging Lanka, Kirulapone, Colombo 5, Sri Lanka, and the donkey sanctuary, Sidmouth, Devon, United Kingdom.

Manna, G., Cersini, A., Nardini, R., Bartolomé Del Pino, L.E., Antognetti, V., Zini, M., Conti, R., Lorenzetti, R., Veneziano, V., Autorino, G.L., Scicluna, M.T., 2018. Genetic diversity of Theileria equi and Babesia caballi infecting horses of Central-Southern Italy and preliminary results of its correlation with clinical and serological status. Ticks Tick Borne Dis. 9, 1212–1220. https://doi.org/https://doi.org/10.1016/j.ttbdis.2018.05.005

Matjila, P.T., Leisewitz, A.L., Oosthuizen, M.C., Jongejan, F., Penzhorn, B.L., 2008. Detection of a Theileria species in dogs in South Africa. Vet. Parasitol. 157, 34–40. https://doi.org/10.1016/j.vetpar.2008.06.025

Mshelia, P.W., Kappmeyer, L., Johnson, W.C., Kudi, C.A., Oluyinka, O.O., Balogun, E.O., Richard, E.E., Onoja, E., Sears, K.P., Ueti, M.W., 2020. Molecular detection of Theileria species and Babesia caballi from horses in Nigeria. Parasitol. Res. 119, 2955–2963. https://doi.org/10.1007/s00436-020-06797-y

OIE., 2021. Terrestrial Animal Health Code Available online at: https://www.oie.int/en/what- we-do/standards/codes-and-manuals/terrestrial-code-online-access (accessed January 2022).

Oosthuizen, M.C., Zweygarth, E., Collins, N.E., Troskie, M., Penzhorn, B.L., 2008. Identification of a novel Babesia sp. from a sable antelope (Hippotragus niger Harris, 1838). J. Clin. Microbiol. 46, 2247–2251. https://doi.org/10.1128/JCM.00167-08

Qablan, M.A., Sloboda, M., Jirků, M., Oborník, M., Dwairi, S., Amr, Z.S., Hořín, P., Lukeš, J., Modrý, D., 2012. Quest for the piroplasms in camels: Identification of Theileria equi and Babesia caballi in Jordanian dromedaries by PCR. Vet. Parasitol. 186, 456–460. https://doi.org/https://doi.org/10.1016/j.vetpar.2011.11.070

Qablan, M.A., Oborník, M., Petrželková, K.J., Sloboda, M., Shudiefat, M.F., Hořín, P., Lukeš, J., Modrý, D., 2013. Infections by Babesia caballi and Theileria equi in Jordanian equids: epidemiology and genetic diversity. Parasitology 140, 1096–1103. https://doi.org/10.1017/S0031182013000486

Rapoport, A., Aharonson-Raz, K., Berlin, D., Tal, S., Gottlieb, Y., Klement, E., Steinman, A. 2014. Molecular characterization of the Babesia caballi rap-1 gene and epidemiological survey in horses in Israel. Infect. Genet. Evol. 23, 115–120. https://doi.org/10.1016/j.meegid.2014.01.033

Rothschild, C.M., 2013. Equine piroplasmosis. J. Equine Vet. Sci. 33, 497–508. https://doi.org/10.1016/j.jevs.2013.03.189

Salim, B., Bakheit, M.A., Kamau, J., Nakamura, I., Sugimoto, C., 2009. Nucleotide sequence heterogeneity in the small subunit ribosomal RNA gene within Theileria equi from horses in Sudan. Parasitol. Res. 106, 493. https://doi.org/10.1007/s00436-009-1691-7

Santiapillai, C., Wijeyamohan, S., Ashby, K.R., 1999. The ecology of a free-living population of the ass (Equus africanus) at Kalpitiya, Sri Lanka. Biol. Conserv. 91, 43– 53.

Sears, K., Knowles, D., Dinkel, K., Mshelia, P.W., Onzere, C., Silva, M., and Fry, L., 2020. Imidocarb dipropionate lacks efficacy against Theileria haneyi and fails to consistently clear Theileria equi in horses co-infected with T. haneyi. Pathogens 9, 1035. https://doi.org/10.3390/pathogens9121035

Scoles, G.A., Ueti, M.W., 2015. Vector ecology of equine piroplasmosis. Annu. Rev. Entomol. 60, 561–580. https://doi.org/10.1146/annurev-ento-010814-021110

Sivakumar, T., Kothalawala, H., Abeyratne, S.A., Vimalakumar, S.C., Meewewa, A.S., Hadirampela, D.T., Puvirajan, T., Sukumar, S., Kuleswarakumar, K., Chandrasiri, A.D., Igarashi, I., Yokoyama, N., 2012. A PCR-based survey of selected Babesia and Theileria parasites in cattle in Sri Lanka. Vet. Parasitol. 190, 263–267. https://doi.org/10.1016/j.vetpar.2012.05.014

Sivakumar, T., Fujita, S., Tuvshintulga, B., Kothalawala, H., Silva, S.S.P., Yokoyama, N., 2019. Discovery of a new Theileria sp. closely related to Theileria annulata in cattle from Sri Lanka. Sci. Rep. 9, 16132. https://doi.org/10.1038/s41598-019-52512-y

Tamzali, Y., 2013. Equine piroplasmosis: An updated review. Equine Vet. Educ. 25, 590–598. https://doi.org/https://doi.org/10.1111/eve.12070

Tarav, M., Tokunaga, M., Kondo, T., Kato-Mori, Y., Hoshino, B., Dorj, U., Hagiwara, K., 2017. Problems in the protection of reintroduced przewalski’s Horses (Equus ferus przewalskii) caused by piroplasmosis. J. Wildl. Dis. 53, 911–915. https://doi.org/10.7589/2017-02-024

Tirosh-Levy, S., Gottlieb, Y., Arieli, O., Mazuz, M.L., King, R., Horowitz, I., Steinman, A., 2020b. Genetic characteristics of Theileria equi in zebras, wild and domestic donkeys in Israel and the Palestinian authority. Ticks Tick Borne Dis. 11, 101286. https://doi.org/10.1016/j.ttbdis.2019.101286

Tirosh-Levy, S., Gottlieb, Y., Fry, L.M., Knowles, D.P., Steinman, A., 2020. Twenty years of equine piroplasmosis research: Global distribution, molecular diagnosis, and phylogeny. Pathogens 9, 926. https://doi.org/10.3390/pathogens9110926

Tirosh-Levy, S., Steinman, A., Levy, H., Katz, Y., Shtilman, M., Gottlieb, Y., 2020a. Parasite load and genotype are associated with clinical outcome of piroplasm-infected equines in Israel. Parasit. Vectors 13, 267. https://doi.org/10.1186/s13071-020-04133-y

Tirosh-Levy, S., Mazuz, M.L., Savitsky, I., Pinkas, D., Gottlieb, Y., Steinman, A., 2021. A serological and molecular prevalence of Babesia caballi in apparently healthy horses in Israel. Pathogens 10, 445. https://doi.org/10.3390/pathogens10040445

Ueti, M.W., Mealey, R.H., Kappmeyer, L.S., White, S.N., Kumpula-McWhirter, N., Pelzel, A.M., Grause, J.F., Bunn, T.O., Schwartz, A., Traub-Dargatz, J.L., Hendrickson, A., Espy, B., Guthrie, A.J., Fowler, W.K., Knowles, D.P., 2012. Re-emergence of the apicomplexan Theileria equi in the United States: elimination of persistent infection and transmission risk. PloS one. 7, 44713. https://doi.org/10.1371/journal.pone.0044713

Wise, L.N, Kappmeyer, L.S., Mealey, R.H., Knowles, D.P., 2013. Review of Equine Piroplasmosis. J. Vet. Intern. Med. 27, 1334–1346. https://doi.org/https://doi.org/10.1111/jvim.12168

Wise, L.N., Pelzel-McCluskey, A.M., Mealey, R.H., Knowles, D.P., 2014. Equine piroplasmosis. Vet. Clin. North Am. Equine Pract. 30, 677–693. https://doi.org/10.1016/j.cveq.2014.08.008

Zhyldyz, A., Sivakumar, T., Igarashi, I., Gunasekara, E., Kothalawala, H., Silva, S., Yokoyama, N., 2019. Epidemiological survey of Anaplasma marginale in cattle and buffalo in Sri Lanka. J. Vet. Med. Sci. 81, 1601–1605. https://doi.org/10.1292/jvms.19-0242

Zobba, R., Ardu, M., Niccolini, S., Chessa, B., Manna, L., Cocco, R., Pinna Parpaglia, M.L., 2008. Clinical and laboratory findings in equine piroplasmosis. J. Equine Vet. Sci. 28, 301–308. https://doi.org/10.1016/j.jevs.2008.03.005

参考文献をもっと見る