リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マウス頭部外傷モデルにおける新規の抗酸化ナノメディシンを用いた脳保護効果」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マウス頭部外傷モデルにおける新規の抗酸化ナノメディシンを用いた脳保護効果

高橋, 利英 筑波大学

2021.02.04

概要

頭部外傷においてフリーラジカル・活性酸素が発生するため、フリーラジカルスカベンジャーであるエダラボンを投与することでモデルラットの脂質過酸化反応やアポトーシスが抑制された先行研究が報告されている。しかし、従来のフリーラジカルスカベンジャーの多くは低分子量であり、正常細胞内の活性酸素を強く抑制することで神経保護効果と同時に神経毒性効果も呈する。そのため頭部外傷におけるフリーラジカルスカベンジャーは臨床適応には至っていない。

それに対し RNP は毒性が弱く、さらに酸性化された脳損傷部に選択的に作用するため、従来のフリーラジカルスカベンジャーよりも良好な神経保護効果を得られる可能性がある。

本研究の目的は頭部外傷モデルマウスに RNP を投与し、神経学的行動および 脳挫傷組織像の評価を行うことで同物質の神経保護効果を検証することである。頭部外傷モデルマウスにおける認知行動評価や脳挫傷体積の測定、脳挫傷周囲 のアストロサイト・神経細胞・ミクログリアの動態、活性酸素消去能の測定に より神経保護効果を分析するとともに、RNP の分布も評価する。

参考文献

1. Altura BM, Altura BT, Gebrewold A, Ising H, Gunther T. Magnesium deficiency and hypertension: correlation between magnesium-deficient diets and microcirculatory changes in situ. Science. 1984;223(4642):1315-1317.

2. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7(2):357-368.

3. Goodman JC, Robertson CS, Grossman RG, Narayan RK. Elevation of tumor necrosis factor in head injury. J Neuroimmunol. 1990;30(2-3):213-217.

4. Kochanek PM, Nemoto EM, Melick JA, Evans RW, Burke DF. Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J Cereb Blood Flow Metab. 1988;8(4):546-551.

5. Lyeth BG, Hayes RL. Cholinergic and opioid mediation of traumatic brain injury. J Neurotrauma. 1992;9 Suppl 2:S463-474.

6. Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma. 1997;14(7):419-440.

7. McIntosh TK, Fernyak S, Yamakami I, Faden AI. Central and systemic kappa-opioid agonists exacerbate neurobehavioral response to brain injury in rats. Am J Physiol. 1994;267(3 Pt 2):R665-672.

8. Raghupathi R, McIntosh TK. Regionally and temporally distinct patterns of induction of c-fos, c-jun and junB mRNAs following experimental brain injury in the rat. Brain Res Mol Brain Res. 1996;37(1-2):134-144.

9. Siesjo BK. Basic mechanisms of traumatic brain damage. Ann Emerg Med. 1993;22(6):959-969.

10. Kontos HA. Oxygen radicals in CNS damage. Chem Biol Interact.

1989;72(3):229-255.

11. Babior BM. Phagocytes and oxidative stress. Am J Med.

2000;109(1):33-44.

12. Ikeda Y, Long DM. The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery. 1990;27(1):1-11.

13. Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H. The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox Res. 2009;16(4):378-389.

14. Petty MA, Poulet P, Haas A, Namer IJ, Wagner J. Reduction of traumatic brain injury-induced cerebral oedema by a free radical scavenger. Eur J Pharmacol. 1996;307(2):149-155.

15. Wang GH, Jiang ZL, Li YC, et al. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J Neurotrauma. 2011;28(10):2123-2134.

16. Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert opinion on pharmacotherapy. 2010;11(10):1753-1763.

17. Soule BP, Hyodo F, Matsumoto K, et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007;42(11):1632-1650.

18. Hahn SM, Sullivan FJ, DeLuca AM, et al. Hemodynamic effect of the nitroxide superoxide dismutase mimics. Free Radic Biol Med. 1999;27(5-6):529-535.

19. Hosoo H, Marushima A, Nagasaki Y, et al. Neurovascular Unit Protection From Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Stroke. 2017;48(8):2238-2247.

20. Yoshitomi T, Miyamoto D, Nagasaki Y. Design of core--shell-type nanoparticles carrying stable radicals in the core. Biomacromolecules. 2009;10(3):596-601.

21. Yoshitomi T, Suzuki R, Mamiya T, Matsui H, Hirayama A, Nagasaki

Y. pH-sensitive radical-containing-nanoparticle (RNP) for the L-band-EPR imaging of low pH circumstances. Bioconjug Chem. 2009;20(9):1792-1798.

22. Chonpathompikunlert P, Fan CH, Ozaki Y, Yoshitomi T, Yeh CK,

Nagasaki Y. Redox nanoparticle treatment protects against neurological deficit in focused ultrasound-induced intracerebral hemorrhage. Nanomedicine (Lond). 2012;7(7):1029-1043.

23. Marushima A, Suzuki K, Nagasaki Y, et al. Newly synthesized radical-containing nanoparticles enhance neuroprotection after cerebral ischemia-reperfusion injury. Neurosurgery. 2011;68(5):1418-1425; discussion 1425-1416.

24. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4(9):1328-1337.

25. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300.

26. Khandelwal VK, Singh P, Ravingerova T, Gregory M, Gandhi H, Chaudhary M. Comparison of different osmotic therapies in a mouse model of traumatic brain injury. Pharmacological reports : PR. 2017;69(1):176-184.

27. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13(10):557-568.

28. Ji X, Peng D, Zhang Y, et al. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res. 2017;1659:88-95.

29. Tao XG, Shi JH, Hao SY, Chen XT, Liu BY. Protective Effects of Calpain Inhibition on Neurovascular Unit Injury through Downregulating Nuclear Factor-kappaB-related Inflammation during Traumatic Brain Injury in Mice. Chin Med J (Engl). 2017;130(2):187-198.

30. Hirayama A, Okamoto T, Kimura S, et al. Kangen-karyu raises surface body temperature through oxidative stress modification. Journal of clinical biochemistry and nutrition. 2016;58(3):167-173.

31. Oowada S, Endo N, Kameya H, Shimmei M, Kotake Y. Multiple

free-radical scavenging capacity in serum. Journal of clinical biochemistry and nutrition. 2012;51(2):117-121.

32. Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med. 1988;4(3):185-198.

33. Biemond P, van Eijk HG, Swaak AJ, Koster JF. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J Clin Invest. 1984;73(6):1576-1579.

34. Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692-702.

35. Wang G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(12):1864-1874.

36. Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275 Pt 3:305-315.

37. Mei T, Kim A, Vong LB, et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant. Biomaterials. 2019;215:119209.

38. Feliciano CP, Tsuboi K, Suzuki K, Kimura H, Nagasaki Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials. 2017;129:68-82.

39. Lee SY, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):495101.

40. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139-2147.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る