リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High Fluid-Pressure Patches Beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High Fluid-Pressure Patches Beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto

Hirose, T. Hamada, Y. Tanikawa, W. Kamiya, N. Yamamoto, Yuzuru Tsuji, T. Kinoshita, M. Heuer, V. B. Inagaki, F. Morono, Y. Kubo, Y. 神戸大学

2021.06.16

概要

Pore pressure plays a key role in the generation of earthquakes in subduction zones. However, quantitative constraints for its determination are quite limited. Here, we estimate the subsurface pore pressure by analyzing the transient upwelling flow of drilling mud from borehole C0023A of the International Ocean Discovery Program (IODP) Expedition 370, in the Nankai Trough off Cape Muroto. This upward flow provided the first direct evidence of an overpressured aquifer in the underthrust sediments off Cape Muroto. To estimate the pre-drilling pore pressure in the overpressured aquifer around a depth of 950–1,050 m below sea floor, we examined the measured porosities of core samples retrieved from nearby IODP wells; we then proceeded to explain the observed time evolution of the flow rate of the upwelling flow by modeling various sized aquifers through solving a radial diffusion equation. It was observed that for a permeability of 10−13 m2, the aquifer possessed an initial excess pore pressure of ∼5–10 MPa above the hydrostatic pressure, with a lateral dimension of several hundred meters and thickness of several tens of meters. The overpressure estimates from the porosity-depth profile at Site C0023 differ from those at other drill sites in the region, suggesting the possible existence of multiple overpressured aquifers with a patchy distribution in the underthrust sediments of the Nankai Trough. As pore pressure is relevant in maintaining fault stability, the overpressured aquifers may be the source of slow earthquakes that have been observed around the drilling site.

この論文で使われている画像

参考文献

Asano, Y., Obara, K., & Ito, Y. (2008). Spatiotemporal distribution of very-low frequency earthquakes in Tokachi-oki near the junction

of the Kuril and Japan trenches revealed by using array signal processing. Earth, Planets and Space, 60(8), 871–875. https://doi.

org/10.1186/BF03352839

Becker, K., Langseth, M. G., & Von Herzen, R. P. (1983). Deep crustal geothermal measurements, Hole 504B, Deep Sea Drilling Project Legs

69 and 70. In Cann, J. R., et al. (Eds.), Initial Reports DSDP, 69 (pp. 223–235). Washington DC: US Government Printing Office. https://

doi.org/10.2973/dsdp.proc.69.105.1983

Bekins, B. A., McCaffrey, A. M., & Dreiss, S. J. (1995). Episodic and constant flow models for the origin of low-chloride waters in a modern

accretionary complex. Water Resources Research, 31, 3205–3215. https://doi.org/10.1029/95WR02569

Blum, P. (1997). Physical properties handbook—A guide to the shipboard measurement of physical properties of deep-sea cores (Technical

Note 26). Ocean Drilling Program. https://doi.org/10.2973/odp.tn.26.1997

Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research,

88, 1153–1172. https://doi.org/10.1029/JB088iB02p01153

Fisher, A. T., Becker, K., & Davis, E. E. (1997). The permeability of young oceanic crust east of Juan de Fuca Ridge determined using borehole thermal measurements. Geophysical Research Letters, 24(11), 1311–1314. https://doi.org/10.1029/97GL01286

Fisher, A. T., & Zwart, G. (1996). Relation between permeability and effective stress along a plate-boundary fault, Barbados accretionary

complex. Geology, 24, 307–310. https://doi.org/10.1130/0091-7613(1996)024<0307:RBPAES>2.3.CO;2

Gamage, K., & Screaton, E. (2006). Characterization of excess pore pressures at the toe of the Nankai accretionary complex, Ocean Drilling

Program sites 1173, 1174, and 808: Results of one-dimensional modeling. Journal of Geophysical Research, 111, B04103. https://doi.

org/10.1029/2004JB003572

Hamada, Y., Hirose, T., Ijiri, A., Yamada, Y., Sanada, Y., Saito, S., et al. (2018). In-situ mechanical weakness of subducting sediments

beneath a plate boundary décollement in the Nankai Trough. Progress in Earth and Planetary Science, 5, 70. https://doi.org/10.1186/

s40645-018-0228-z

Heuer, V. B., Inagaki, F., Morono, Y., Kubo, Y., Maeda, L., et al. (2017). Temperature limit of the deep bio-sphere off Muroto. In Proceedings of the International Ocean Discovery Program, 370. College Station, TX: International Ocean Discovery Program. https://doi.

org/10.14379/iodp.proc.370.103.2017

Jaeger, J. C., & Clark, M. (1942). A short table of I(O, I; x). In Proceedings of the royal society of Edinburg, A (Vol. 61, pp. 229–230).

Kitajima, H., & Saffer, D. M. (2012). Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the

Nankai Trough subduction megathrust. Geophysical Research Letters, 39, L23301. https://doi.org/10.1029/2012GL053793

Kodaira, S., Iidaka, T., Kato, A., Park, J. O., Iwasaki, T., & Kaneda, Y. (2004). High pore fluid pressure may cause silent slip in the Nankai

Trough. Science, 304(5676), 1295–1298. https://doi.org/10.1126/science.1096535

Leeman, J. R., Saffer, D. M., Scuderi, M. M., & Marone, C. (2016). Laboratory observations of slow earthquakes and the spectrum of tectonic

fault slip modes. Nature Communications, 7, 11104. https://doi.org/10.1038/ncomms11104

Moore, G. F., Taira, A., Klaus, A., & Becker, A. (2001). Proceedings of the Ocean drilling ProgramInitial Reports 190. College Station, TX:

Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.190.2001

Moore, J. C., & Vrolijk, P. (1992). Fluids in accretionary prisms. Reviews of Geophysics, 30, 113–135. https://doi.org/10.1029/92RG00201

Nakano, M., Hori, T., Araki, E., Kodaira, S., & Ide, S. (2018). Shallow very-low-frequency earthquakes accompany slow slip events in the

Nankai subduction zone. Nature Communications, 9(1), 984. https://doi.org/10.1038/s41467-018-03431-5

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/

science.aaf1512

Okamoto, A., Niemeijer, A. R., Takeshita, T., Verberne, B. A., & Spiers, C. J. (2020). Frictional properties of actinolite-chlorite gouge at

hydrothermal conditions. Tectonophysics, 779, 228377. https://doi.org/10.1016/j.tecto.2020.228377

Rice, J. R., & Ruina, A. L. (1983). Stability of steady frictional slipping. Journal of Applied Mechanics, 50(2), 343–349. https://doi.

org/10.1115/1.3167042

Rubey, W. W., & Hubbert, M. K. (1959). Role of fluid pressure in mechanics of overthrust faulting. II. Overthrust belt in geosynclinals area

of western Wyoming in light of fluid-pressure hypothesis. Geological Society of America Bulletin, 70, 167–205. https://doi.org/10.1130/

0016-7606(1959)70[167:rofpim]2.0.co;2

Saffer, D. M. (2003). Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin:

Comparison with northern Barbados and Nankai. Journal of Geophysical Research, 108(B5), 2261. https://doi.org/10.1029/2002JB001787

Saffer, D. M., & Bekins, B. A. (1998). Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, and fluid budget.

Journal of Geophysical Research, 103, 30351–30370. https://doi.org/10.1029/98JB01983

Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review

of Earth and Planetary Sciences, 39, 157–186. https://doi.org/10.1146/annurev-earth-040610-133408

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37–42. https://doi.org/10.1038/34097

Screaton, E. J., Saffer, D. M., Henry, P., & Hunze, S. (2002). Porosity loss within the underthrust sediments of the Nankai accretionary

complex: Implications for overpressures. Geology, 30(1), 19–22. https://doi.org/10.1130/0091-7613(2002)030<0019:PLWTUS>2.0.CO;2

Shipboard Scientific Party. (1991). Site 808. In Taira, A., Hill, I., Firth, J. V., et al. (Eds.), Proceedings of the ocean drilling program, Initial

Reports 131 (pp. 71–269). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.131.106.1991

Shipboard Scientific Party. (2001a). Site 1173. In Moore, G. F., Taira, A., Klaus, A., et al. (Eds.), Proceedings of ocean drilling program,

Initial Reports 190 (pp. 1–147). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.190.104.2001

Shipboard Scientific Party. (2001b). Site 1174. In Moore, G., Taira, A., Klaus, A., et al. (Eds.), Proceedings of ocean drilling program, Initial

Reports 190 (pp. 1–149). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.190.105.2001

12 of 13

Journal of Geophysical Research: Solid Earth

10.1029/2021JB021831

Shi, Y., & Wang, C. Y. (1988). Generation of high pore pressures in accretionary prisms: Inferences from the Barbados Subduction Complex.

Journal of Geophysical Research, 93(B8), 8893–8910. https://doi.org/10.1029/JB093iB08p08893

Skarbek, R. M., & Saffer, D. M. (2009). Pore pressure development beneath the deécollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering. Journal of Geophysical Research, 114, B07401. https://doi.

org/10.1029/2008JB006205

Spinelli, G. A., Saffer, D. M., & Underwood, M. B. (2006). Hydrogeologic responses to three-dimensional temperature variability, Costa Rica

sub-duction margin. Journal of Geophysical Research, 111, B04403. https://doi.org/10.1029/2004JB003436

Takemura, S., Matsuzawa, T., Noda, A., Tonegawa, T., Asano, Y., Kimura, T., & Shiomi, K. (2019). Structural characteristics of the Nankai

Trough shallow plate boundary inferred from shallow very low frequency earthquakes. Geophysical Research Letters, 46, 4192–4201.

https://doi.org/10.1029/2019GL082448

Tobin, H. J., & Kinoshita, M. (2006). Investigations of seismogenesis at the Nankai Trough, Japan. (NanTroSEIZE Stage). Integrated Ocean

Drilling Program Scientific Prospectus. https://doi.org/10.2204/iodp.sp.nantroseize1.2006

Tobin, H. J., & Saffer, D. M. (2009). Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough

subduction zone. Geology, 37(8), 679–682. https://doi.org/10.1130/G25752A.1

Tsuji, T., Tokuyama, H., Costa Pisani, P., & Moore, G. (2008). Effective stress and pore pressure in the Nankai accretionary prism off the

Muroto Peninsula, southwestern Japan. Journal of Geophysical Research, 113, B11401. https://doi.org/10.1029/2007JB005002

Yokota, Y., & Ishikawa, T. (2020). Shallow slow slip events along the Nankai Trough detected by GNSS-A. Science Advances, 6, eaay5786.

https://doi.org/10.1126/sciadv.aay5786

Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai

Trough megathrust zone. Nature, 534, 374–377. https://doi.org/10.1038/nature17632

HIROSE ET AL.

13 of 13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る