リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「一過性及び長期的な水中運動が大動脈血行動態に及ぼす影響」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

一過性及び長期的な水中運動が大動脈血行動態に及ぼす影響

福家, 真理那 筑波大学 DOI:10.15068/0002005657

2022.11.24

概要

世界で最多の死因である心血管疾患(CVD: cardiovascular disease)は、我が国においても、死亡かつ要介護認定の主要因である(厚生労働省)。CVDの罹患者数の増加は公衆衛生学的問題にとどまらず、患者の経済的負担や勤労世代の医療保険料負担の増加や介護人員の不足などの問題を深刻化させる。このような生物医学的、医療経済的課題に対処するためには、CVDの発症を遅らせることや良好な転機を引き起こす予防や介入策を特定し、取り組むことが必要である。

 CVDは血圧(BP)や血流(すなわち血行動態)の異常により引き起こされる疾患である。そのため、CVD発症予防において、血圧を正常域(収縮期BP130mmHg未満、拡張期BP80mmHg未満)に維持することが重要である。そのため、簡便で即時的な評価が可能な上腕動脈BPは、家庭または臨床において慣習的に行われている。しかし、近年の大規模な追跡研究から大動脈収縮期BP(SBP)の方が上腕動脈SBPよりも左心室の壁厚と重量係数の病的な増大と密接に関連することが示されている(Roman et al., 2010)。また、他の大規模な研究では、複数の心血管疾患関連因子(総コレステロール、左室重量、糸球体濾過量など)で調整した後であっても、上腕動脈SBPやPPとは独立して大動脈SBPはCVD死亡を予測したことが報告されている(Wamgetal.,2009)。これらの報告で示唆されているように、CVDの発症予防において、末梢動脈BPだけでなく大動脈BPへのアプローチを重視すべきである。

 そもそも上腕動脈と大動脈BPでCVDとの関係性に違いがあるのは、脈波が心臓近位部から遠位部に動脈樹に沿って伝播する過程で変形するためである。血管床毎により動脈の構造・機能に違いがある。心臓近位の大動脈の壁には弾性線維が豊富で伸展性が高い。その一方で末梢動脈の中間層は弾性線維よりも平滑筋及び内皮細胞が豊富で、血管径も狭小化する。これらの動脈の構造的な変化はSBPやPPを急上昇させるため、大動脈から末梢動脈に向かい圧が増幅する(Figure1-1, A)(Nichols et al., 2008)。しかし、この脈圧振幅の程度(脈圧増幅)には個人間及び個人内で顕著な差がある。例えば、大動脈硬化や心収縮力及び心拍数の亢進などにより大動脈SBPが顕著に上昇すると、脈圧増幅が小さくなり、「Figure1-1, A」から「Figure1-1,C」のように変化する。

 また、大動脈と末梢動脈のBPの生理的な変化が異なるのは動脈の構造の違いだけではない。動脈圧波形を構成する2つの脈波にも影響を受ける。動脈圧波形は左室駆出時に発生する「駆出波」と駆出波が末梢に伝播する途中で反射点にあたり、反射して帰ってくる「反射波」の合成波である。駆出波は大動脈硬化や心収縮力に影響を受け、反射波は末梢動脈床(主に細動脈)の血管緊張・弛緩や内皮機能などに影響を受ける。ただし末梢動脈BPは反射波が発生する地点から近いか、その先にあるため反射波の影響を受けづらい。一方で大動脈脈波形にはは大動脈壁だけでなく全身の動脈の構造及び機能の変化の影響を受ける。そのため末梢動脈BPは大動脈BPを完全に反映することができない。したがって、大動脈BPのモニタリングは末梢動脈BPと同様に重要である。

 CVD発症予防及び治療に上腕動脈BPだけでなく、大動脈BPへの介入が必要であることは以前の大規模な臨床研究において示されている。異なる種類の降圧薬(β遮断系とカルシウム拮抗薬)でその治療の予後を追跡した。その結果、この2種類の薬剤は、末梢動脈BPには同様の降圧効果を示した。しかし、大動脈BPには一方の薬剤(カルシウム拮抗薬)のみしか降圧効果を示さなかった。さらに大動脈BPの降圧効果がない薬物治療群(β遮断薬における治療群)は降圧効果のあった治療群よりも追跡期間中の心血管イベント発生が多かったことを報告した(Protogerou et al., 2007; Protogerou et al., 2009)。この研究結果は、末梢動脈BPよりも大動脈BPがCVD発症予防・治療の効果を反映することを示唆している(Williams et al., 2006)。このようなことから、CVDの予防には、上腕動脈BPだけでなく大動脈BPの増大を抑制・改善し、正常に管理することが重要であることは明らかである。

 定期的な有酸素性運動は上記に挙げた血圧を決定する全身の動脈硬化、内皮機能を改善(Tanaka et al., 1998; Tanaka et al., 2000; Seals et al., 2008)することが知られている。有酸素性運動が動脈に与える効果の機序として、運動中の一回拍出量(SV)の増加が動脈壁へのせん断応力や伸展刺激を増大させ、これが動脈壁の機能や構造に好影響をもたらすと推察されている(Kingwell et al., 1997)。この点に関して、水中運動は運動姿勢(仰伏臥位で行う水泳運動時)や水圧の作用による心臓への帰還血流(静脈還流)量の増加によって中心血流量が増大し、運動時のSVが大きくなる(Park et al., 1999; Carter et al., 2014)。このことから、水中運動の繰り返しは大動脈の構造及び機能の向上を介して大動脈血流に対するBP(すなわち、大動脈血行動態)に好影響を及ぼす可能性がある。実際に先行研究では、水泳運動習慣のある中年者の大動脈SBPは陸上持久性運動習慣のある同年代の者と同様に運動習慣のない者よりも明らかに低かったことが報告されている(Nualnim et al., 2011)。

 ただし、水泳運動のように特異的な技術や顔面浸水などを必要とする運動形態は全ての者に実施可能ではない。水中で行う運動は、水泳だけでなく立位で行う運動も存在する。水泳運動よりも運動強度は非常に低くなるが水深が深くなるため、水圧の影響を大きく受け、水泳運動と同様に静脈還流量の増大が引き起こると考えられる。したがって、息止めや泳力を必要とする水泳運動でない立位での水中運動でも大動脈血行動態への好影響が認められる可能性がある。

 水泳運動や立位での水中運動は、水の浮力を含めた様々な作用を利用することで、陸上運動よりも骨格筋系への荷重ストレスを軽減することができるため、健康づくりのための運動の導入期や長期入院患者へのリハビリテーションとして利用しやすい運動様式として知られている。ただし、CVDと密接な関連を示す大動脈血行動態に対する水中運動の影響に関して不明瞭な部分が多い。推奨の運動量を確保することが困難な虚弱高齢者や外科的障害及び疼痛の悪化のリスクが高い肥満者にとって水中運動は実現可能性の高い運動様式である。本研究は、心血管機能における重要なアウトカムである大動脈血行動態への水中運動の効果を明らかにすることで、より多くの者へのCVD発症の予防に役に立つ知見を発見することを期待する。

この論文で使われている画像

参考文献

Adsett, J.A., Mudge, A.M., Morris, N., Kuys, S., and Paratz, J.D. (2015). Aquatic exercise training and stable heart failure: a systematic review and meta-analysis. Int J Cardiol 186, 22-28.

Agostoni, E., Gurtner, G., Torri, G., and Rahn, H. (1966). Respiratory mechanics during submersion and negative-pressure breathing. Journal of Applied Physiology 21(1), 251-258.

Alberton, C.L., Cadore, E.L., Pinto, S.S., Tartaruga, M.P., da Silva, E.M., and Kruel, L.F. (2011). Cardiorespiratory, neuromuscular and kinematic responses to stationary running performed in water and on dry land. Eur J Appl Physiol 111(6), 1157- 1166.

Alkatan, M., Machin, D.R., Baker, J.R., Akkari, A.S., Park, W., and Tanaka, H. (2016). Effects of swimming and cycling exercise intervention on vascular function in patients with osteoarthritis. Am. J. Cardiol 117(1), 141-145.

Andersen, F.R., Ilebekk, A., and Kill, F. (1990). Variations in left ventricular volume alter myocardial oxygen consumption more at low than at high inotropy. Acta Physiol Scand 139(1), 95-102.

Arborelius, M., Jr., Ballidin, U.I., Lilja, B., and Lundgren, C.E. (1972). Hemodynamic changes in man during immersion with the head above water. Aerosp Med 43(6), 592-598.

Balcazar, D., Regge, V., Santalla, M., Meyer, H., Paululat, A., Mattiazzi, A., et al. (2018). SERCA is critical to control the Bowditch effect in the heart. Scientific Reports 8(1), 12447.

Becker, B.E. (2009). Aquatic therapy: scientific foundations and clinical rehabilitation applications. Pm&r 1(9), 859-872.

Belz, G.G. (1995). Elastic properties and windkessel function of the human aorta. Cardiovasc Drugs Ther 9(1), 73-83. doi: 10.1007/bf00877747.

Borg, G.A. (1982). Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5), 377-381.

Boutouyrie, P., Bussy, C., Lacolley, P., Girerd, X., Laloux, B., and Laurent, S. (1999). Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100(13), 1387-1393.

Cacicedo, J.M., Gauthier, M.-S., Lebrasseur, N.K., Jasuja, R., Ruderman, N.B., and Ido, Y. (2011). Acute exercise activates AMPK and eNOS in the mouse aorta. American Journal of Physiology-Heart and Circulatory Physiology 301(4), H1255-H1265.

Carter, H.H., Spence, A.L., Pugh, C.J., Ainslie, P., Naylor, L.H., and Green, D.J. (2014). Cardiovascular responses to water immersion in humans: impact on cerebral perfusion. Am J Physiol Regul Integr Comp Physiol 306(9), R636-640. doi: 10.1152/ajpregu.00516.2013.

Chen, C.-H., Nevo, E., Fetics, B., Pak, P.H., Yin, F.C., Maughan, W.L., et al. (1997). Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 95(7), 1827-1836.

Cheung, C.P., Coates, A.M., Currie, K.D., King, T.J., Mountjoy, M.L., and Burr, J.F. (2021). Examining the relationship between arterial stiffness and swim-training volume in elite aquatic athletes. Eur. J. Appl. Physiol, 1-11.

Chouchou, F., Pichot, V., Costes, F., Guillot, M., Barthélémy, J.C., Bertoletti, L., et al. (2020). Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur J Appl Physiol 120(2), 337-347.

Christie, J.L., Sheldahl, L.M., Tristani, F.E., Wann, L.S., Sagar, K.B., Levandoski, S.G., et al. (1990). Cardiovascular regulation during head-out water immersion exercise. J Appl Physiol (1985) 69(2), 657-664.

Craig Jr, A.B., and Dvorak, M. (1966). Thermal regulation during water immersion. Journal of Applied Physiology 21(5), 1577-1585.

de Simone, G., Roman, M.J., Koren, M.J., Mensah, G.A., Ganau, A., and Devereux, R.B. (1999). Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension. Hypertension 33(3), 800-805.

Di Prampero, P. (1986). The energy cost of human locomotion on land and in water. International journal of sports medicine 7(02), 55-72.

Drabek, C.M. (1975). Some anatomical aspects of the cardiovascular system of Antarctic seals and their possible functional significance in diving. J Morphol 145(1), 85- 105.

Elliott, T. (1912). The control of the suprarenal glands by the splanchnic nerves 1. The Journal of physiology 44(5-6), 374-409.

Frank, O. (1959). On the dynamics of cardiac muscle. American Heart Journal 58(2), 282-317.

Fukuie, M., Hoshi, D., Hashitomi, T., Watanabe, K., Tarumi, T., and Sugawara, J. (2021a). Exercise in water provides better cardiac energy efficiency than on land. Front Cardiovasc Med 8, 747841.

Fukuie, M., Yamabe, T., Hoshi, D., Hashitomi, T., Nomura, Y., and Sugawara, J. (2021b). Effect of aquatic exercise training on aortic hemodynamics in middle-aged and elderly adults. Front Cardiovasc Med 8, 770519.

Gosline, J.M., and Shadwick, R.E. (1996). The mechanical properties of fin whale arteries are explained by novel connective tissue designs. J. Exp. Biol. 199(4), 985-997.

Greenwald, S. (2007). Ageing of the conduit arteries. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 211(2), 157-172.

Guyton, A., and Hall, J. (2000). Textbook of medical physiology. . 10.

Hall, J., Bisson, D., and O'Hare, P. (1990). The Physiology of Immersion. Physiotherapy 76(9), 517-521.

Harms, M.P.M., Wesseling, K.H., Pott, F., Jenstrup, M., Van Goudoever, J., Secher, N.H., et al. (1999). Continuous stroke volume monitoring by modelling flow from non- invasive measurement of arterial pressure in humans under orthostatic stress. Clinical Science 97(3), 291-301.

Hasegawa, N., Fujie, S., Horii, N., Miyamoto-Mikami, E., Tsuji, K., Uchida, M., et al. (2018). Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med Sci Sports Exerc 50(6), 1177-1185.

Hashimoto, J., Westerhof, B.E., Westerhof, N., Imai, Y., and O'Rourke, M.F. (2008). Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. Hypertension 26(5), 1017-1024.

Hayashi, S., and Otsuki, T. (2019). Higher left ventricular wall thickness and forearm blood flow may be associated with higher systolic blood pressure in swimmers. The Journal of Physical Fitness and Sports Medicine 8(1), 51-56.

Hoshi, D., Fukuie, M., Tamai, S., Momma, R., Tarumi, T., Sugawara, J., et al. (2022). Influence of water immersion on the airway impedance measured by forced oscillation technique. Respiratory Physiology & Neurobiology 295, 103779.

Igarashi, Y., and Nogami, Y. (2018). The effect of regular aquatic exercise on blood pressure: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol 25(2), 190-199.

Jost, J., Weiss, M., and Weicker, H. (1989). Comparison of sympatho-adrenergic regulation at rest and of the adrenoceptor system in swimmers, long-distance runners, weight lifters, wrestlers and untrained men. European journal of applied physiology and occupational physiology 58(6), 596-604.

Karamanoglu, M., O'Rourke, M.F., Avolio, A.P., and Kelly, R.P. (1993). An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 14(2), 160-167.

Kass, D. (2002). Augmentation Index (脈波増大係数) とは何か.

Kass, D.A., Saeki, A., Tunin, R.S., and Recchia, F.A. (1996). Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion. Circulation 93(8), 1533-1541.

Kelly, R., Hayward, C., Avolio, A., and O'rourke, M. (1989). Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80(6), 1652-1659.

Khanam, S., and Costarelli, V. (2008). Attitudes towards health and exercise of overweight women. J.R. Soc. Promot. Health. 128(1), 26-30.

Kingwell, B.A., Berry, K.L., Cameron, J.D., Jennings, G.L., and Dart, A.M. (1997). Arterial compliance increases after moderate-intensity cycling. Am J Physiol 273(5 Pt 2), H2186-2191.

Kishino, T., and Matsuda, M. (1997). Effect of a short time water immersion at subaxillary level on cardiac autonomic nerve activity-A study in water at 25° C, 30° C and 34° C. Japanese J. Phys. Fit. Sports Med. 46(1), 101-112.

Knowlton, F., and Starling, E. (1912). The influence of variations in temperature and blood ‐ pressure on the performance of the isolated mammalian heart. The Journal of physiology 44(3), 206-219.

Kollias, A., Lagou, S., Zeniodi, M.E., Boubouchairopoulou, N., and Stergiou, G.S. (2016). Association of Central Versus Brachial Blood Pressure With Target-Organ Damage: Systematic Review and Meta-Analysis. Hypertension 67(1), 183-190.

Lazar, J.M., Morris, M., Qureshi, G., Jean-Noel, G., Nichols, W., Qureshi, M.R., et al. (2008). The effects of head-out-of-water immersion on arterial wave reflection in healthy adults. J Am Soc Hypertens 2(6), 455-461.

Lindqvist, A. (1995). Beat‐to‐beat agreement of non‐invasive finger artery and invasive radial artery blood pressure in hypertensive patients taking cardiovascular medication. Clinical Physiology 15(3), 219-229.

MacKay, R.S., Marg, E., and Oechsli, R. (1960). Automatic tonometer with exact theory: various biological applications. Science 131(3414), 1668-1669.

Meredith-Jones, K., Waters, D., Legge, M., and Jones, L. (2011). Upright water-based exercise to improve cardiovascular and metabolic health: a qualitative review. Complementary therapies in medicine 19(2), 93-103.

Meyer, K., and Bucking, J. (2004). Exercise in heart failure: should aqua therapy and swimming be allowed? Med Sci Sports Exerc 36, 2017-2023.

Miyano, I., Nishinaga, M., Takata, J., Shimizu, Y., Okumiya, K., Matsubayashi, K., et al. (2010). Association between brachial–ankle pulse wave velocity and 3-year mortality in community-dwelling older adults. Hypertension Research 33(7), 678- 682.

Monge Garcia, M.I., Jian, Z., Settels, J.J., Hunley, C., Cecconi, M., Hatib, F., et al. (2018). Performance comparison of ventricular and arterial dP/dt(max) for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care 22(1), 325.

Mosteller, R. (1987). Simplified calculation of body-surface area. The New England journal of medicine 317(17), 1098-1098.

Motobe, K., Tomiyama, H., Koji, Y., Yambe, M., Gulinisa, Z., Arai, T., et al. (2005). Cut- off value of the ankle-brachial pressure index at which the accuracy of brachial- ankle pulse wave velocity measurement is diminished. Circ J 69(1), 55-60.

Mourot, L., Bouhaddi, M., Gandelin, E., Cappelle, S., Dumoulin, G., Wolf, J.P., et al. (2008). Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion. Aviat Space Environ Med 79(1), 14-20.

Munakata, M., Konno, S., Miura, Y., and Yoshinaga, K. (2012). Prognostic significance of the brachial–ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertension Research 35(8), 839-842.

Murgo, J.P., Westerhof, N., Giolma, J.P., and Altobelli, S.A. (1980). Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62(1), 105-116.

Nichols, W. (2005). O'Rourke MF. McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. New York, NY: A Hodder Arnold.

Nichols, W.W., Denardo, S.J., Wilkinson, I.B., McEniery, C.M., Cockcroft, J., and O'Rourke, M.F. (2008). Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens 10(4), 295- 303.

Nishimura, K., Yamaguchi, H., Nakanishi, Y., and Onodera, S. (2004). Effects of different water temperatures on rectal temperature and oxygen uptake during supine floating. Japanese Jourbal of Sciences in Swimming and Water Exercise 7(1), 17- 22.

Nishiwaki, M., Takahara, K., and Matsumoto, N. (2017). Arterial stiffness in young adult swimmers. Eur J Appl Physiol 117(1), 131-138.

Nualnim, N., Barnes, J.N., Tarumi, T., Renzi, C.P., and Tanaka, H. (2011). Comparison of central artery elasticity in swimmers, runners, and the sedentary. Am J Cardiol 107(5), 783-787.

O'Rourke, M.F., and Hashimoto, J. (2007). Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50(1), 1-13.

O’Rourke, M.F. (2006). 1 Principles and definitions of arterial stiffness, wave reflections and pulse pressure amplification. 23, 3.

Ogoh, S., Hirasawa, A., Raven, P.B., Rebuffat, T., Denise, P., Lericollais, R., et al. (2015). Effect of an acute increase in central blood volume on cerebral hemodynamics. Am J Physiol Regul Integr Comp Physiol 309(8), R902-911.

Parati, G., Casadei, R., Groppelli, A., Di Rienzo, M., and Mancia, G. (1989). Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 13(6_pt_1), 647-655.

Park, K.S., Choi, J.K., and Park, Y.S. (1999). Cardiovascular regulation during water immersion. Appl Human Sci 18(6), 233-241.

Park, S.Y., Kwak, Y.S., and Pekas, E.J. (2019). Impacts of aquatic walking on arterial stiffness, exercise tolerance, and physical function in patients with peripheral artery disease: a randomized clinical trial. J Appl Physiol (1985) 127(4), 940-949.

Patterson, S.W., Piper, H., and Starling, E.H. (1914). The regulation of the heart beat. J Physiol 48(6), 465-513.

Perini, R., Milesi, S., Biancardi, L., Pendergast, D.R., and Veicsteinas, A. (1998). Heart rate variability in exercising humans: effect of water immersion. European Journal of Applied Physiology and Occupational Physiology 77(4), 326-332.

Pressman, G., and Newgard, P. (1963). A transducer for the continuous external measurement of arterial blood pressure. IEEE Transactions on Bio-medical Electronics 10(2), 73-81.

Protogerou, A.D., Papaioannou, T.G., Blacher, J., Papamichael, C.M., Lekakis, J.P., and Safar, M.E. (2007). Central blood pressures: do we need them in the management of cardiovascular disease? Is it a feasible therapeutic target? J Hypertens 25(2), 265-272. doi: 10.1097/HJH.0b013e3280114f23.

Protogerou, A.D., Stergiou, G.S., Vlachopoulos, C., Blacher, J., and Achimastos, A. (2009). The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part II: Evidence for specific class-effects of antihypertensive drugs on pressure amplification. Curr Pharm Des 15(3), 272-289. doi: 10.2174/138161209787354186.

Randall, O., Westerhof, N., Van den Bos, G., and Alexander, B. (1986). Reliability of stroke volume to pulse pressure ratio for estimating and detecting changes in arterial compliance. J. Hypertens. 4(5), S293-296.

Reilly, T., Dowzer, C.N., and Cable, N. (2003). The physiology of deep-water running. Journal of Sports Science 21(12), 959-972.

Remington, J.W., Noback, C.R., Hamilton, W., and Gold, J.J. (1948). Volume elasticity characteristics of the human aorta and prediction of the stroke volume from the pressure pulse. Am. J. Physiol., 153(2), 298-308.

Robinson, S., and Somers, A. (1971). Temperature regulation in swimming. Journal de physiologie 63(3), 406-409.

Robotham, J.L., Takata, M., Berman, M., and Harasawa, Y. (1991). Ejection fraction revisited. Anesthesiology (Philadelphia) 74(1), 172-183.

Roman, M.J., Devereux, R.B., Kizer, J.R., Lee, E.T., Galloway, J.M., Ali, T., et al. (2007). Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension 50(1), 197-203.

Roman, M.J., Devereux, R.B., Kizer, J.R., Okin, P.M., Lee, E.T., Wang, W., et al. (2009). High Central Pulse Pressure Is Independently Associated With Adverse Cardiovascular Outcome: The Strong Heart Study. Journal of the American College of Cardiology 54(18), 1730-1734.

Roman, M.J., Okin, P.M., Kizer, J.R., Lee, E.T., Howard, B.V., and Devereux, R.B. (2010). Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens 28(2), 384-388.

Sagawa, K. (1981). The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation 63(6), 1223-1227.

Salvi, P. (2017). Pulse waves. How Vascular Hemodynamics Affects Blood Pressure, 2nd ed.; Springer Nature: Heidelberg, Germany, 217.

Sarnoff, S.J., Braunwald, E., G. H. Welch, J., Case, R.B., Stainsby, W.N., and Macruz, R. (1957). Hemodynamic Determinants of Oxygen Consumption of the Heart With Special Reference to the Tension-Time Index. American Journal of Physiology- Legacy Content 192(1), 148-156.

Sheldahl, L.M., Tristani, F.E., Clifford, P.S., Hughes, C.V., Sobocinski, K.A., and Morris, R.D. (1987). Effect of head-out water immersion on cardiorespiratory response to dynamic exercise. J Am Coll Cardiol 10(6), 1254-1258.

Sherlock, L., Fournier, S., DeVallance, E., Lee, K., Carte, S., and Chantler, P. (2014). Effects of shallow water aerobic exercise training on arterial stiffness and pulse wave analysis in older individuals. Int. J. Aquat. Res. Educ 8(4), 3.

Shibata, S., Fu, Q., Hastings, J., Prasad, A., Conner, C., Shook, R., et al. (2007). "Effects of Life‐long Exercise Training on Aortic‐Age in the Elderly". Wiley Online Library).

Shoji, T., Nakagomi, A., Okada, S., Ohno, Y., and Kobayashi, Y. (2017). Invasive validation of a novel brachial cuff-based oscillometric device (SphygmoCor XCEL) for measuring central blood pressure. J. Hypertens. 35(1), 69-75.

Spencer, M.P., and Greiss, F.C. (1962). Dynamics of ventricular ejection. Circulation Research 10(3), 274-279.

Srámek, P., Simecková, M., Janský, L., Savlíková, J., and Vybíral, S. (2000). Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol 81(5), 436-442.

Starling, E.H. (1920). On the Circulatory Changes Associated with Exercise. BMJ Military Health 34(3), 258-272.

Stergiopulos, N., Westerhof, B.E., and Westerhof, N. (1999). Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. Heart Circ. Physiol. 276(1), H81-H88.

Stoner, L., Faulkner, J., Lowe, A., D, M.L., J, M.Y., Love, R., et al. (2014). Should the augmentation index be normalized to heart rate? J Atheroscler Thromb 21(1), 11-16. doi: 10.5551/jat.20008.

Sugawara, J. (2018). Effects of aquatic physical activity on proximal aortc function in middle-aged and elderly adults. Descente Sports Sci 39, 158-164.

Sugawara, J., Hayashi, K., and Tanaka, H. (2010). Distal shift of arterial pressure wave reflection sites with aging. Hypertension 56(5), 920-925. doi: 10.1161/hypertensionaha.110.160549.

Sugawara, J., Hayashi, K., and Tanaka, H. (2014). Arterial path length estimation on brachial-ankle pulse wave velocity: validity of height-based formulas. J Hypertens 32(4), 881-889.

Sugawara, J., Hayashi, K., Yokoi, T., Cortez-Cooper, M.Y., DeVan, A.E., Anton, M.A., et al. (2005). Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 19(5), 401-406.

Sugawara, J., Tanabe, T., Miyachi, M., Yamamoto, K., Takahashi, K., Iemitsu, M., et al. (2003). Non-invasive assessment of cardiac output during exercise in healthy young humans: comparison between modelflow method and doppler echocardiography method. Acta Physiol Scand 179(4), 361-366.

Sugawara, J., Tomoto, T., Imai, T., Maeda, S., and Ogoh, S. (2017). Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain. Am J Physiol Heart Circ Physiol 312(5), H1076-H1084.

Sugawara, J., Tomoto, T., and Tanaka, H. (2018). Heart-to-Brachium Pulse Wave Velocity as a Measure of Proximal Aortic Stiffness: MRI and Longitudinal Studies. American Journal of Hypertension 32(2), 146-154.

Takahashi, K., Miyachi, M., Fujimoto, K., Takamoto, T., Yamazaki, K., Matsueda, S., et al. (2003). Maximal oxygen uptake is associated with dimensions in left ventricle and aorta. Japan Journal of Physical Education, Health and Sport Sciences 48, 691-703.

Takazawa, K. (2006). AI の心臓に対する後負荷指標としての有効性. Arterial stiffness 9.

Tanaka, H. (2009). Swimming exercise. Sports Medicine 39(5), 377-387.

Tanaka, H., Munakata, M., Kawano, Y., Ohishi, M., Shoji, T., Sugawara, J., et al. (2009). Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens 27(10), 2022-2027.

Tanaka, H., Tomoto, T., Kosaki, K., and Sugawara, J. (2016). Arterial stiffness of lifelong Japanese female pearl divers. Am J Physiol Regul Integr Comp Physiol 310(10), R975-978.

Tartiere, J.M., Logeart, D., Beauvais, F., Chavelas, C., Kesri, L., Tabet, J.Y., et al. (2007). Non‐invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. European journal of heart failure 9(5), 477- 483.

Tarumi, T., Sugawara, J., and Tanaka, H. (2011). Association between ankle blood pressure and central arterial wave reflection. J Hum Hypertens 25(9), 539-544.

Tarumi, T., Yamabe, T., Fukuie, M., Kimura, R., Zhu, D.C., Ohyama-Byun, K., et al. (2021). Proximal Aortic Compliance in Young Male Endurance Athletes: An MRI Study. Medicine & Science in Sports & Exercise 53(3), 543-550.

Teichholz, L.E., Kreulen, T., Herman, M.V., and Gorlin, R. (1976). Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. The American Journal of Cardiology 37(1), 7-11.

Tomiyama, H., Koji, Y., Yambe, M., Shiina, K., Motobe, K., Yamada, J., et al. (2005). Brachial-ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome. Circulation Journal 69(7), 815-822.

Tomoto, T. (2016). 持久性トレーニングに伴う中心動脈機能の適応と心機能および脳循環動態の関連性. 筑波大学.

Tomoto, T., Imai, T., Ogoh, S., Maeda, S., and Sugawara, J. (2018a). Relationship between aortic compliance and impact of cerebral blood flow fluctuation to dynamic orthostatic challenge in endurance athletes. Front Physiol 9, 25.

Tomoto, T., Sugawara, J., Hirasawa, A., Imai, T., Maeda, S., and Ogoh, S. (2015). Impact of short-term training camp on arterial stiffness in endurance runners. J Physiol Sci 65(5), 445-449.

Tomoto, T., Sugawara, J., Hirasawa, A., Imai, T., Maeda, S., and Ogoh, S. (2018b). Impact of short-term training camp on aortic blood pressure in collegiate endurance Runners. Front Physiol 9, 290.

Torres-Ronda, L., and i del Alcázar, X.S. (2014). The properties of water and their applications for training. Journal of human kinetics 44(1), 237-248.

Ueno, L., Miyachi, M., Matsui, T., Takahashi, K., Yamazaki, K., Hayashi, K., et al. (2005). Effect of aging on carotid artery stiffness and baroreflex sensitivity during head- out water immersion in man. Braz. J. Med. Biol. Res 38, 629-637.

van Lieshout, J.J., Toska, K., van Lieshout, E.J., Eriksen, M., Walløe, L., and Wesseling, K.H. (2003). Beat-to-beat noninvasive stroke volume from arterial pressure and Doppler ultrasound. European Journal of Applied Physiology 90(1), 131-137.

Vlachopoulos, C., Aznaouridis, K., O'Rourke, M.F., Safar, M.E., Baou, K., and Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 31(15), 1865-1871.

Vlachopoulos, C., Aznaouridis, K., Terentes-Printzios, D., Ioakeimidis, N., and Stefanadis, C. (2012). Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension 60(2), 556-562.

Vlachopoulos, C., O'Rourke, M., and Nichols, W.W. (2011). McDonald's blood flow in arteries: theoretical, experimental and clinical principles. CRC press.

Wagenseil, J.E., and Mecham, R.P. (2012). Elastin in large artery stiffness and hypertension. Journal of cardiovascular translational research 5(3), 264-273.

Waller, B., Ogonowska-Słodownik, A., Vitor, M., Rodionova, K., Lambeck, J., Heinonen, A., et al. (2016). The effect of aquatic exercise on physical functioning in the older adult: a systematic review with meta-analysis. Age Ageing 45(5), 593-601.

Wang, Y., Bell, A., Wang, H., Kwabena, B., and Fan, S. (2018). The aortic windkessel property adaptation in whole-body immersion stressed mice. Angiol 6(222), 2.

Wanjare, M., Agarwal, N., and Gerecht, S. (2015). Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells. Am. J. Physiol., Cell Physiol 309(4), C271-281.

Wesseling, K.H., Jansen, J.R., Settels, J.J., and Schreuder, J.J. (1993). Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol (1985) 74(5), 2566-2573.

Williams, B., Lacy, P.S., Thom, S.M., Cruickshank, K., Stanton, A., Collier, D., et al. (2006). Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113(9), 1213-1225.

Wong, A., Kwak, Y.-S., Scott, S.D., Pekas, E.J., Son, W.-M., Kim, J.-S., et al. (2019). The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause 26(6), 653-658.

Yoshimura, S. (1976). 脈波と血管弾性--脈波速度法の原理と本質. 呼吸と循環24(5), p376-387.

Yuan, W.-X., Liu, H.-B., Gao, F.-S., Wang, Y.-X., and Qin, K.-R. (2016). Effects of 8- week swimming training on carotid arterial stiffness and hemodynamics in young overweight adults. Biomed. Eng. Online 15(2), 673-684.

厚生労働省(2016). 平成28年国民健康基礎調査概要.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る