リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「連続流補助人工心臓治療における心室間相互作用及び末梢循環に関する検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

連続流補助人工心臓治療における心室間相互作用及び末梢循環に関する検討

島村, 淳一 東京大学 DOI:10.15083/0002006392

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 島村 淳一

本研究は、連続流左室補助人工心臓(CF-LVAD)治療時における主要な合併症である右
心不全や末梢血管機能不全に関与しうる心室間相互作用及び末梢循環のメカニズムを明ら
かにするため、成ヤギを用いた大動物実験により生理学的検討を行ったものであり、下記の結
果を得ている。
1. 成ヤギに連続流ポンプとしてEVAHEARTを装着し、両心室にコンダクタンスカテーテルを
挿入した。CF-LVAD駆動を行いながら両心室容量変化の解析を行うことにより、心室間
同期不全現象の観察及び定量化を行った。続いて、本現象とCF-LVADによる左室減負
荷の相関に関して検討を行った。その結果、心室間同期不全時間は補助率の上昇に伴
い増加する傾向にあり、左室stroke volumeの変化からみた左室減負荷の程度との間に相
関を認めた。以上の結果から、心室間同期不全は補助率や左室の減負荷の程度に応じ
て顕在化し、CF-LVAD補助下における心室間相互作用に影響しうるものと考えられた。
2. 成ヤギに連続流ポンプとしてEVAHEARTを装着し、網膜中心動脈におけるLSFG計測を
LVAD装着前及びLVAD装着後100%補助下に施行した。これにより、末梢循環動態の観
察及びLSFG Fluctuation値を用いた拍動性評価を行なった。また、網膜中心動脈の支配
血管である外頸動脈に超音波流量計を装着し、頸動脈における血流波形、pulsatility
indexと、網膜中心動脈におけるLSFG波形、Fluctuationを比較した。その結果、網膜中心
動脈レベルにおいて、LVAD装着前には拍動性を有する血流波形が、100%補助において
は拍動性の弱い血流波形が観察された。また、LSFG fluctuation値はLVAD装着前に比
べ、LVAD装着後100%補助において有意に低下を認めた。さらに、頸動脈における
pulsatility indexとLSFG fluctuation値の間に良好な相関を認めた。以上の結果から、網膜
中心動脈におけるLSFG評価により、超音波流量計による計測と類似した末梢循環の観察
並びに拍動性評価が可能であることが示された。
以上、本論文は、連続流補助人工心臓治療時における心室間相互作用としての心室
間同期不全現象の詳細、並びに末梢循環解析手法の検討を行なったものであり、これら
の知見は、同治療における合併症の病態解明に役立ち、より生理的で安全な左室補助
人工心臓治療の確立に寄与するものと考えられる。
よって本論文は博士(医学)の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Fang JC, Ewald GA, Allen LA, Butler J, Westlake Canary CA, Colvin-Adams

M, Dickinson MG, Levy P, Stough WG, Sweitzer NK, Teerlink JR, Whellan DJ,

Albert NM, Krishnamani R, Rich MW, Walsh MN, Bonnell MR, Carson PE,

Chan MC, Dries DL, Hernandez AF, Hershberger RE, Katz SD, Moore S,

Rodgers JE, Rogers JG, Vest AR, Givertz MM. Advanced (stage D) heart

failure: a statement from the Heart Failure Society of America Guidelines

Committee. J Card Fail. 21. 519-534. 2015.

Kinugawa K. How to treat stage D heart failure? - When to implant left

ventricular assist devices in the era of continuous flow pumps? Circ J. 75. 20382045. 2011.

Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky

W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P,

Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, DesvigneNickens P, Oz MC, Poirier VL. Long-term use of a left ventricular assist device

for end-stage heart failure. N Engl J Med. 345. 1435-1443. 2001.

Katz JN, Waters SB, Hollis IB, Chang PP. Advanced therapies for end-stage

heart failure. Curr Cardiol Rev. 11. 63-72. 2015.

Slaughter MS. Long-term continuous flow left ventricular assist device support

and end-organ function: prospects for destination therapy. J Card Surg. 25. 490494. 2010.

Khush KK, Cherikh WS, Chambers DC, Harhay MO, Hayes D, Jr., Hsich E,

Meiser B, Potena L, Robinson A, Rossano JW, Sadavarte A, Singh TP,

Zuckermann A, Stehlik J. The International Thoracic Organ Transplant Registry

of the International Society for Heart and Lung Transplantation: Thirty-sixth

adult heart transplantation report - 2019; focus theme: Donor and recipient size

match. J Heart Lung Transplant. 38. 1056-1066. 2019.

Lund LH, Edwards LB, Dipchand AI, Goldfarb S, Kucheryavaya AY, Levvey

BJ, Meiser B, Rossano JW, Yusen RD, Stehlik J. The Registry of the

International Society for Heart and Lung Transplantation: Thirty-third Adult

Heart Transplantation Report-2016; Focus Theme: Primary Diagnostic

Indications for Transplant. J Heart Lung Transplant. 35. 1158-1169. 2016.

Chambers DC, Cherikh WS, Harhay MO, Hayes D, Jr., Hsich E, Khush KK,

Meiser B, Potena L, Rossano JW, Toll AE, Singh TP, Sadavarte A, Zuckermann

A, Stehlik J. The International Thoracic Organ Transplant Registry of the

77

International Society for Heart and Lung Transplantation: Thirty-sixth adult lung

and heart-lung transplantation Report-2019; Focus theme: Donor and recipient

9.

10.

11.

12.

13.

14.

15.

16.

17.

size match. J Heart Lung Transplant. 38. 1042-1055. 2019.

Hayes D, Jr., Cherikh WS, Chambers DC, Harhay MO, Khush KK, Lehman RR,

Meiser B, Rossano JW, Hsich E, Potena L, Sadavarte A, Singh TP, Zuckermann

A, Stehlik J. The International Thoracic Organ Transplant Registry of the

International Society for Heart and Lung Transplantation: Twenty-second

pediatric lung and heart-lung transplantation report-2019; Focus theme: Donor

and recipient size match. J Heart Lung Transplant. 38. 1015-1027. 2019.

Kinugawa K, Nishimura T, Toda K, Saiki Y, Niinami H, Nunoda S, Matsumiya

G, Nishimura M, Arai H, Morita S, Yanase M, Fukushima N, Nakatani T,

Sakata Y, Ono M. The second official report from Japanese registry for

mechanical assisted circulatory support (J-MACS): first results of bridge to

bridge strategy. Gen Thorac Cardiovasc Surg. 2019.

Nakatani T, Sase K, Oshiyama H, Akiyama M, Horie M, Nawata K, Nishinaka

T, Tanoue Y, Toda K, Tozawa M, Yamazaki S, Yanase M, Ohtsu H, Ishida M,

Hiramatsu A, Ishii K, Kitamura S. Japanese registry for Mechanically Assisted

Circulatory Support: First report. J Heart Lung Transplant. 36. 1087-1096. 2017.

Yoshioka D, Okazaki S, Toda K, Murase S, Saito S, Domae K, Miyagawa S,

Yoshikawa Y, Daimon T, Sakaguchi M, Sawa Y. Prevalence of Cerebral

Microbleeds in Patients With Continuous-Flow Left Ventricular Assist Devices.

J Am Heart Assoc. 6. 2017.

Cornwell WK, 3rd, Ambardekar AV, Tran T, Pal JD, Cava L, Lawley J, Tarumi

T, Cornwell CL, Aaronson K. Stroke Incidence and Impact of Continuous-Flow

Left Ventricular Assist Devices on Cerebrovascular Physiology. Stroke. 50. 542548. 2019.

Trachtenberg BH, Cordero-Reyes A, Elias B, Loebe M. A review of infections

in patients with left ventricular assist devices: prevention, diagnosis and

management. Methodist Debakey Cardiovasc J. 11. 28-32. 2015.

Aslam S. Ventricular Assist Device Infections. Cardiol Clin. 36. 507-517. 2018.

Radovancevic B, Vrtovec B, de Kort E, Radovancevic R, Gregoric ID, Frazier

OH. End-organ function in patients on long-term circulatory support with

continuous- or pulsatile-flow assist devices. J Heart Lung Transplant. 26. 815818. 2007.

Goldstein DJ, Meyns B, Xie R, Cowger J, Pettit S, Nakatani T, Netuka I, Shaw

S, Yanase M, Kirklin JK. Third Annual Report From the ISHLT Mechanically

78

Assisted Circulatory Support Registry: A comparison of centrifugal and axial

continuous-flow left ventricular assist devices. J Heart Lung Transplant. 38.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

352-363. 2019.

Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC, Jr., Colombo PC,

Walsh MN, Milano CA, Patel CB, Jorde UP, Pagani FD, Aaronson KD, Dean

DA, McCants K, Itoh A, Ewald GA, Horstmanshof D, Long JW, Salerno C. A

Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N

Engl J Med. 376. 440-450. 2017.

Travis AR, Giridharan GA, Pantalos GM, Dowling RD, Prabhu SD, Slaughter

MS, Sobieski M, Undar A, Farrar DJ, Koenig SC. Vascular pulsatility in

patients with a pulsatile- or continuous-flow ventricular assist device. J Thorac

Cardiovasc Surg. 133. 517-524. 2007.

Hasin T, Matsuzawa Y, Guddeti RR, Aoki T, Kwon TG, Schettle S, Lennon RJ,

Chokka RG, Lerman A, Kushwaha SS. Attenuation in peripheral endothelial

function after continuous flow left ventricular assist device therapy is associated

with cardiovascular adverse events. Circ J. 79. 770-777. 2015.

Sakaki M, Taenaka Y, Tatsumi E, Nakatani T, Kinoshita M, Akagi H,

Masuzawa T, Matsuo Y, Inoue K, Baba Y, et al. Pulmonary function in a nonpulsatile pulmonary circulation. Asaio j. 38. M366-369. 1992.

Purohit SN, Cornwell WK, 3rd, Pal JD, Lindenfeld J, Ambardekar AV. Living

Without a Pulse: The Vascular Implications of Continuous-Flow Left

Ventricular Assist Devices. Circ Heart Fail. 11. e004670. 2018.

Izzy S, Rubin DB, Ahmed FS, Akbik F, Renault S, Sylvester KW, Vaitkevicius

H, Smallwood JA, Givertz MM, Feske SK. Cerebrovascular Accidents During

Mechanical Circulatory Support: New Predictors of Ischemic and Hemorrhagic

Strokes and Outcome. Stroke. 49. 1197-1203. 2018.

Kadakkal A, Najjar SS. Neurologic Events in Continuous-Flow Left Ventricular

Assist Devices. Cardiol Clin. 36. 531-539. 2018.

Gasparovic H, Kopjar T, Saeed D, Cikes M, Svetina L, Petricevic M, Lovric D,

Milicic D, Biocina B. De Novo Aortic Regurgitation After Continuous-Flow

Left Ventricular Assist Device Implantation. Ann Thorac Surg. 104. 704-711.

2017.

Amer S, Shah P, Hassan S. Gastrointestinal bleeding with continuous-flow left

ventricular assist devices. Clin J Gastroenterol. 8. 63-67. 2015.

Kim JH, Brophy DF, Shah KB. Continuous-Flow Left Ventricular Assist

Device-Related Gastrointestinal Bleeding. Cardiol Clin. 36. 519-529. 2018.

79

28.

29.

30.

31.

32.

33.

34.

35.

36.

Hendry PJ, Ascah KJ, Rajagopalan K, Calvin JE. Does septal position affect

right ventricular function during left ventricular assist in an experimental

porcine model? Circulation. 90. Ii353-358. 1994.

Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, Senni M,

Clemenza F, Agnese V, Falletta C, Romano G, Maalouf J, Dandel M. Prediction

of right ventricular failure after ventricular assist device implant: systematic

review and meta-analysis of observational studies. Eur J Heart Fail. 19. 926-946.

2017.

Ogawa D, Kobayashi S, Yamazaki K, Motomura T, Nishimura T, Shimamura J,

Tsukiya T, Mizuno T, Takewa Y, Tatsumi E. Mathematical evaluation of

cardiac beat synchronization control used for a rotary blood pump. J Artif

Organs. 22. 276-285. 2019.

Ando M, Nishimura T, Takewa Y, Kyo S, Ono M, Taenaka Y, Tatsumi E.

Creating an ideal "off-test mode" for rotary left ventricular assist devices:

establishing a safe and appropriate weaning protocol after myocardial recovery.

J Thorac Cardiovasc Surg. 143. 1176-1182. 2012.

Ando M, Nishimura T, Takewa Y, Ogawa D, Yamazaki K, Kashiwa K, Kyo S,

Ono M, Taenaka Y, Tatsumi E. What is the ideal off-test trial for continuousflow ventricular-assist-device explantation? Intracircuit back-flow analysis in a

mock circulation model. J Artif Organs. 14. 70-73. 2011.

Ando M, Nishimura T, Takewa Y, Ogawa D, Yamazaki K, Kashiwa K, Kyo S,

Ono M, Taenaka Y, Tatsumi E. A novel counterpulse drive mode of continuousflow left ventricular assist devices can minimize intracircuit backward flow

during pump weaning. J Artif Organs. 14. 74-79. 2011.

Ando M, Nishimura T, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T,

Mizuno T, Taenaka Y, Tatsumi E. Electrocardiogram-synchronized rotational

speed change mode in rotary pumps could improve pulsatility. Artif Organs. 35.

941-947. 2011.

Ando M, Takewa Y, Nishimura T, Yamazaki K, Kyo S, Ono M, Tsukiya T,

Mizuno T, Taenaka Y, Tatsumi E. A novel counterpulsation mode of rotary left

ventricular assist devices can enhance myocardial perfusion. J Artif Organs. 14.

185-191. 2011.

Ando M, Takewa Y, Nishimura T, Yamazaki K, Kyo S, Ono M, Tsukiya T,

Mizuno T, Taenaka Y, Tatsumi E. Coronary vascular resistance increases under

full bypass support of centrifugal pumps--relation between myocardial perfusion

and ventricular workload during pump support. Artif Organs. 36. 105-110. 2012.

80

37.

38.

39.

40.

41.

42.

43.

44.

Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, Ono M,

Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Alteration of LV end-diastolic

volume by controlling the power of the continuous-flow LVAD, so it is

synchronized with cardiac beat: development of a native heart load control

system (NHLCS). J Artif Organs. 15. 128-133. 2012.

Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, Ono M,

Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Change of coronary flow by

continuous-flow left ventricular assist device with cardiac beat synchronizing

system (native heart load control system) in acute ischemic heart failure model.

Circ J. 77. 995-1000. 2013.

Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T, Mizuno

T, Katagiri N, Kakuta Y, Ogawa D, Nishimura M, Tatsumi E. Influence of a

novel electrocardiogram-synchronized rotational-speed-change system of an

implantable continuous-flow left ventricular assist device (EVAHEART) on

hemolytic performance. J Artif Organs. 17. 373-377. 2014.

Kishimoto S, Takewa Y, Tsukiya T, Mizuno T, Date K, Sumikura H, Fujii Y,

Ohnuma K, Togo K, Katagiri N, Naito N, Kishimoto Y, Nakamura Y,

Nishimura M, Tatsumi E. Novel temporary left ventricular assist system with

hydrodynamically levitated bearing pump for bridge to decision: initial

preclinical assessment in a goat model. J Artif Organs. 21. 23-30. 2018.

Kishimoto Y, Takewa Y, Arakawa M, Umeki A, Ando M, Nishimura T, Fujii Y,

Mizuno T, Nishimura M, Tatsumi E. Development of a novel drive mode to

prevent aortic insufficiency during continuous-flow LVAD support by

synchronizing rotational speed with heartbeat. J Artif Organs. 16. 129-137.

2013.

Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Adachi H, Tatsumi E.

Alternation of left ventricular load by a continuous-flow left ventricular assist

device with a native heart load control system in a chronic heart failure model. J

Thorac Cardiovasc Surg. 148. 698-704. 2014.

Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y, Fujii Y,

Kyo S, Adachi H, Tatsumi E. Novel control system to prevent right ventricular

failure induced by rotary blood pump. J Artif Organs. 17. 135-141. 2014.

Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y,

Kishimoto S, Fujii Y, Date K, Kyo S, Adachi H, Tatsumi E. Pulsatile support

using a rotary left ventricular assist device with an electrocardiographysynchronized rotational speed control mode for tracking heart rate variability. J

81

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Artif Organs. 19. 204-207. 2016.

Date K, Nishimura T, Arakawa M, Takewa Y, Kishimoto S, Umeki A, Ando M,

Mizuno T, Tsukiya T, Ono M, Tatsumi E. Changing pulsatility by delaying the

rotational speed phasing of a rotary left ventricular assist device. J Artif Organs.

20. 18-25. 2017.

Date K, Nishimura T, Takewa Y, Kishimoto S, Arakawa M, Umeki A, Ando M,

Mizuno T, Tsukiya T, Ono M, Tatsumi E. Shifting the pulsatility by increasing

the change in rotational speed for a rotary LVAD using a native heart load

control system. J Artif Organs. 19. 315-321. 2016.

Naito N, Mizuno T, Nishimura T, Kishimoto S, Takewa Y, Eura Y, Kokame K,

Miyata T, Date K, Umeki A, Ando M, Ono M, Tatsumi E. Influence of a

Rotational Speed Modulation System Used With an Implantable ContinuousFlow Left Ventricular Assist Device on von Willebrand Factor Dynamics. Artif

Organs. 40. 877-883. 2016.

Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M,

Tatsumi E. Rotational speed modulation used with continuous-flow left

ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac

Surg. 26. 119-123. 2018.

Naito N, Nishimura T, Takewa Y, Kishimoto S, Date K, Umeki A, Ando M,

Ono M, Tatsumi E. What Is the Optimal Setting for a Continuous-Flow Left

Ventricular Assist Device in Severe Mitral Regurgitation? Artif Organs. 40.

1039-1045. 2016.

Turner KR. Right Ventricular Failure After Left Ventricular Assist Device

Placement-The Beginning of the End or Just Another Challenge? J Cardiothorac

Vasc Anesth. 33. 1105-1121. 2019.

McCabe C, White PA, Rana BS, Gopalan D, Agrawal B, Pepke-Zaba J, Hoole

SP. Right ventricle functional assessment: have new techniques supplanted the

old faithful conductance catheter? Cardiol Rev. 22. 233-240. 2014.

Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical

support: Decision making and strategies for avoidance of right heart failure after

left ventricular assist device implantation. Int J Cardiol. 198. 241-250. 2015.

Ranganath NK, Smith DE, Moazami N. The Achilles' heel of left ventricular

assist device therapy: right ventricle. Curr Opin Organ Transplant. 23. 295-300.

2018.

Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK,

Pandian NG, Patel AR. Preoperative three-dimensional echocardiography to

82

assess risk of right ventricular failure after left ventricular assist device surgery.

J Card Fail. 21. 189-197. 2015.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Mandarino WA, Morita S, Kormos RL, Kawai A, Deneault LG, Gasior TA,

Losken B, Griffith BP. Quantitation of right ventricular shape changes after left

ventricular assist device implantation. Asaio j. 38. M228-231. 1992.

Sack KL, Dabiri Y, Franz T, Solomon SD, Burkhoff D, Guccione JM.

Investigating the Role of Interventricular Interdependence in Development of

Right Heart Dysfunction During LVAD Support: A Patient-Specific MethodsBased Approach. Front Physiol. 9. 520. 2018.

Farrar DJ, Chow E, Compton PG, Foppiano L, Woodard J, Hill JD. Effects of

acute right ventricular ischemia on ventricular interactions during prosthetic left

ventricular support. J Thorac Cardiovasc Surg. 102. 588-595. 1991.

Farrar DJ, Chow E, Wood JR, Hill JD. Anatomic interaction between the right

and left ventricles during univentricular and biventricular circulatory support.

ASAIO Trans. 34. 235-240. 1988.

Lim HS, Howell N, Ranasinghe A. The Physiology of Continuous-Flow Left

Ventricular Assist Devices. J Card Fail. 23. 169-180. 2017.

Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP.

Interventricular and intraventricular dyssynchrony in idiopathic dilated

cardiomyopathy: a prognostic study with fourier phase analysis of radionuclide

angioscintigraphy. J Am Coll Cardiol. 40. 2022-2030. 2002.

Miyazaki A, Sakaguchi H, Noritake K, Hayama Y, Negishi J, Kagisaki K,

Yasuda K, Ichikawa H, Ohuchi H. Interventricular dyssynchrony in a patient

with a biventricular physiology and a systemic right ventricle. Heart Vessels. 32.

234-239. 2017.

Staal EM, Baan J, Jukema JW, van der Wall EE, Steendijk P. Transcardiac

conductance for continuous measurement of left ventricular volume: validation

vs. angiography in patients. Intensive Care Med. 30. 1370-1376. 2004.

Staal EM, Steendijk P, Koning G, Dijkstra J, Jukema JW, Baan J. Continuous

on-line measurement of absolute left ventricular volume by transcardiac

conductance: angiographic validation in sheep. Crit Care Med. 30. 1301-1305.

2002.

Steendijk P, Tulner SA, Schreuder JJ, Bax JJ, van Erven L, van der Wall EE,

Dion RA, Schalij MJ, Baan J. Quantification of left ventricular mechanical

dyssynchrony by conductance catheter in heart failure patients. Am J Physiol

Heart Circ Physiol. 286. H723-730. 2004.

83

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Bozkurt S. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow

Rate Under Continuous Flow Left Ventricular Assist Device Support. Artif

Organs. 42. 800-813. 2018.

Castagna F, Stohr EJ, Pinsino A, Cockcroft JR, Willey J, Reshad Garan A,

Topkara VK, Colombo PC, Yuzefpolskaya M, McDonnell BJ. The Unique

Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and

Future Opportunities. Curr Hypertens Rep. 19. 85. 2017.

Holman WL, Kirklin JK, Naftel DC, Kormos RL, Desvign-Nickens P, Camacho

MT, Ascheim DD. Infection after implantation of pulsatile mechanical

circulatory support devices. J Thorac Cardiovasc Surg. 139. 1632-1636.e1632.

2010.

Holman WL, Naftel DC, Eckert CE, Kormos RL, Goldstein DJ, Kirklin JK.

Durability of left ventricular assist devices: Interagency Registry for

Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. J

Thorac Cardiovasc Surg. 146. 437-441.e431. 2013.

Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R. Effects of

centrifugal, axial, and pulsatile left ventricular assist device support on endorgan function in heart failure patients. J Heart Lung Transplant. 28. 352-359.

2009.

Kanda H, Kunisawa T, Iida T, Tada M, Kimura F, Ise H, Kamiya H. Cerebral

Circulation During Retrograde Cerebral Perfusion: Evaluation Using Laser

Speckle Flowgraphy. Ann Thorac Surg. 107. 1747-1752. 2019.

Kanda H, Kunisawa T, Kitahara H, Iida T, Toyama Y, Kanao-Kanda M, Mori C,

Kamiya H. Cerebral Hypoxia Caused by Flow Confliction During Minimally

Invasive Cardiac Surgery With Retrograde Perfusion: A Word of Caution. J

Cardiothorac Vasc Anesth. 32. 1838-1840. 2018.

Mizuno T, Tsukiya T, Takewa Y, Tatsumi E. Differences in clotting parameters

between species for preclinical large animal studies of cardiovascular devices. J

Artif Organs. 21. 138-141. 2018.

Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC,

Fukamachi K. Does pulsatility matter in the era of continuous-flow blood

pumps? J Heart Lung Transplant. 34. 999-1004. 2015.

Petrucci RJ, Rogers JG, Blue L, Gallagher C, Russell SD, Dordunoo D, Jaski

BE, Chillcott S, Sun B, Yanssens TL, Tatooles A, Koundakjian L, Farrar DJ,

Slaughter MS. Neurocognitive function in destination therapy patients receiving

continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart

84

75.

Lung Transplant. 31. 27-36. 2012.

Petrucci RJ, Wright S, Naka Y, Idrissi KA, Russell SD, Dordunoo D, Jaski B,

76.

Chillcott S, Feldman D, Yanssens T, Heatley G, Koundakjian L, Farrar DJ,

Aaronson KD. Neurocognitive assessments in advanced heart failure patients

receiving continuous-flow left ventricular assist devices. J Heart Lung

Transplant. 28. 542-549. 2009.

Wever-Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM,

77.

78.

79.

80.

81.

82.

83.

Labedi M, Reid BB, Davis ES, Kfoury AG, Li DY, Stehlik J, Bader F.

Pulsatility and the risk of nonsurgical bleeding in patients supported with the

continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 6.

517-526. 2013.

Alnawaiseh M, Ertmer C, Seidel L, Arnemann PH, Lahme L, Kampmeier TG,

Rehberg SW, Heiduschka P, Eter N, Hessler M. Feasibility of optical coherence

tomography angiography to assess changes in retinal microcirculation in ovine

haemorrhagic shock. Crit Care. 22. 138. 2018.

Calzetti G, Fondi K, Bata AM, Luft N, Wozniak PA, Witkowska KJ, Bolz M,

Popa-Cherecheanu A, Werkmeister RM, Schmidl D, Garhofer G, Schmetterer L.

Assessment of choroidal blood flow using laser speckle flowgraphy. Br J

Ophthalmol. 102. 1679-1683. 2018.

Hayashi H, Okamoto M, Kawanishi H, Matsuura T, Tabayashi N, Taniguchi S,

Kawaguchi M. Ocular Blood Flow Measured Using Laser Speckle Flowgraphy

During Aortic Arch Surgery With Antegrade Selective Cerebral Perfusion. J

Cardiothorac Vasc Anesth. 30. 613-618. 2016.

Hayashi H, Okamoto M, Kawanishi H, Tabayashi N, Matsuura T, Taniguchi S,

Kawaguchi M. Association Between Optic Nerve Head Blood Flow Measured

Using Laser Speckle Flowgraphy and Radial Arterial Pressure During Aortic

Arch Surgery. J Cardiothorac Vasc Anesth. 32. 702-708. 2018.

Kikuchi S, Miyake K, Tada Y, Uchida D, Koya A, Saito Y, Ohura T, Azuma N.

Laser speckle flowgraphy can also be used to show dynamic changes in the

blood flow of the skin of the foot after surgical revascularization. Vascular. 27.

242-251. 2019.

Kimura F, Kanda H, Toyama Y, Kunisawa T, Nagaoka T, Yoshida A, Kitahara

H, Kamiya H. Evaluation of cerebral circulation during retrograde perfusion by

laser speckle flowgraphy. Gen Thorac Cardiovasc Surg. 65. 527-531. 2017.

Luft N, Wozniak PA, Aschinger GC, Fondi K, Bata AM, Werkmeister RM,

Schmidl D, Witkowska KJ, Bolz M, Garhofer G, Schmetterer L. Ocular Blood

85

Flow Measurements in Healthy White Subjects Using Laser Speckle

Flowgraphy. PLoS One. 11. e0168190. 2016.

84.

85.

86.

87.

88.

89.

90.

91.

Matsumoto T, Itokawa T, Shiba T, Katayama Y, Arimura T, Mizukaki N, Yoda

H, Hori Y. Reproducibility of Neonate Ocular Circulation Measurements Using

Laser Speckle Flowgraphy. Biomed Res Int. 2015. 693056. 2015.

Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L, Bolz M.

Laser speckle flowgraphy derived characteristics of optic nerve head perfusion

in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 8.

5343. 2018.

Nenekidis I, Geiser M, Riva C, Pournaras C, Tsironi E, Vretzakis G, Mitilis V,

Tsilimingas N. Blood flow measurements within optic nerve head during onpump cardiovascular operations. A window to the brain? Interact Cardiovasc

Thorac Surg. 12. 718-722. 2011.

Ohsugi Y, Nagashima Y, Nakatsu S, Sato K, Chiba A, Fujinaka H, Yano Y,

Niki Y. Age-related changes in gingival blood flow parameters measured using

laser speckle flowmetry. Microvasc Res. 122. 6-12. 2019.

Omodaka S, Endo H, Doi H, Shimizu H, Fujimura M, Aizawa N, Nakazawa T,

Tominaga T. Usefulness of laser speckle flowgraphy for the assessment of

ocular blood flow in extracranial-intracranial bypass. J Stroke Cerebrovasc Dis.

23. e445-448. 2014.

Lima A, Bakker J. Clinical assessment of peripheral circulation. Curr Opin Crit

Care. 21. 226-231. 2015.

Takahashi T, Asano Y, Amiya E, Hatano M, Tamaki Z, Takata M, Ozeki A,

Watanabe A, Kawarasaki S, Taniguchi T, Ichimura Y, Toyama T, Watanabe M,

Hirata Y, Nagai R, Komuro I, Sato S. Clinical correlation of brachial artery

flow-mediated dilation in patients with systemic sclerosis. Mod Rheumatol. 24.

106-111. 2014.

Vosborg F, Malmqvist L, Hamann S. Non-invasive measurement techniques for

quantitative assessment of optic nerve head blood flow. Eur J Ophthalmol.

1120672119858891. 2019.

86

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る