リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Liver autophagy-induced valine and leucine in plasma reflect the metabolic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Liver autophagy-induced valine and leucine in plasma reflect the metabolic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin

Furuya, Futoshi 京都大学 DOI:10.14989/doctor.r13558

2023.05.23

概要

The number of patients with type 2 diabetes is
increasing worldwide; obesity often induces insulin
resistance that leads to progression to diabetes.1,2 In
addition, type 2 diabetes is a high-risk factor for cardiovascular disease (CAD) and non-alcoholic fatty liver ...

この論文で使われている画像

参考文献

1 Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the

American diabetes association (ADA) and the European association

for the study of diabetes (EASD). Diabetes Care. 2018;41(12):2669–

2701.

2 Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - an autoinflammatory disease driven by metabolic stress. Biochim Biophys

Acta, Mol Basis Dis. 2018;1864(11):3805–3823.

3 Sarwar R, Pierce N, Koppe S. Obesity and nonalcoholic fatty liver

disease: current perspectives. Diabetes Metab Syndrome Obes Targets

Ther. 2018;11:533–542.

4 Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease:

revisiting an old relationship. Metabol Clin Exp. 2019;92:98–107.

5 Andrianesis V, Glykofridi S, Doupis J. The renal effects of SGLT2

inhibitors and a mini-review of the literature. Therapeut Adv

Endocrinol Metabol. 2016;7:212–228.

6 Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2

diabetes: clinical data and mechanism of action. J Diabet Invest.

2014;5(3):265–275.

7 Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med.

2017;377(7):644–657.

8 Wanner C, Marx N. SGLT2 inhibitors: the future for treatment of

type 2 diabetes mellitus and other chronic diseases. Diabetologia.

2018;61(10):2134–2139.

9 Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med.

2015;373(22):2117–2128.

10 Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–

357.

11 Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabol Clin Exp.

2016;65(8):1038–1048.

12 Komiya C, Tsuchiya K, Shiba K, et al. Ipragliflozin improves hepatic

steatosis in obese mice and liver dysfunction in type 2 diabetic

patients irrespective of body weight reduction. PLoS One.

2016;11(3):19.

13 Takeda A, Irahara A, Nakano A, et al. The improvement of the

hepatic histological findings in a patient with non-alcoholic steatohepatitis with type 2 diabetes after the administration of the

www.thelancet.com Vol 86 December, 2022

Articles

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

sodium-glucose cotransporter 2 inhibitor ipragliflozin. Intern Med.

2017;56(20):2739–2744.

Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ,

Pelleymounter MA. Weight loss induced by chronic dapagliflozin

treatment is attenuated by compensatory hyperphagia in dietinduced obese (DIO) rats. Obesity. 2012;20(8):1645–1652.

Newgard CB. Metabolomics and metabolic diseases: where do we

stand? Cell Metabol. 2017;25(1):43–56.

Ogura M, Nakamura Y, Tanaka D, et al. Overexpression of SIRT5

confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun.

2010;393(1):73–78.

Abudukadier A, Fujita Y, Obara A, et al. Tetrahydrobiopterin has a

glucose-lowering effect by suppressing hepatic gluconeogenesis in

an endothelial nitric oxide synthase-dependent manner in diabetic

mice. Diabetes. 2013;62(9):3033–3043.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG.

Improving bioscience research reporting: the ARRIVE guidelines

for reporting animal research. J Pharmacol Pharmacother.

2010;1(2):94–99.

Kadowaki M, Kanazawa T. Amino acids as regulators of proteolysis.

J Nutr. 2003;133(6):2052S–6S.

Chao EC, Henry RR. SGLT2 inhibition - a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–559.

Komatsu M, Ichimura Y. Selective autophagy regulates various

cellular functions. Gene Cell. 2010;15(9):923–933.

Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the

early neonatal starvation period. Nature. 2004;432(7020):1032–1036.

Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y.

In vivo analysis of autophagy in response to nutrient starvation

using transgenic mice expressing a fluorescent autophagosome

marker. Mol Biol Cell. 2004;15(3):1101–1111.

Meng Z, Liu X, Li T, et al. The SGLT2 inhibitor empagliflozin

negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy

pathway. Int Immunopharmacol. 2021;94:107492.

Li L, Li Q, Huang W, et al. Dapagliflozin alleviates hepatic steatosis

by restoring autophagy via the AMPK-mTOR pathway. Front

Pharmacol. 2021;12:589273.

Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Empagliflozin

attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet

fed ApoE(-/-) mice by activating autophagy and reducing ER stress

and apoptosis. Int J Mol Sci. 2021;22(2):818.

Ezaki J, Matsumoto N, Takeda-Ezaki M, et al. Liver autophagy

contributes to the maintenance of blood glucose and amino acid

levels. Autophagy. 2011;7(7):727–736.

Ha J, Guan KL, Kim J. AMPK and autophagy in glucose/glycogen

metabolism. Mol Aspect Med. 2015;46:46–62.

Singh R, Kaushik S, Wang YJ, et al. Autophagy regulates lipid

metabolism. Nature. 2009;458(7242):1131–U64.

Tanaka S, Hikita H, Tatsumi T, et al. Rubicon inhibits autophagy

and accelerates hepatocyte apoptosis and lipid accumulation in

nonalcoholic fatty liver disease in mice. Hepatology.

2016;64(6):1994–2014.

Seok S, Kim YC, Byun S, et al. Fasting-induced JMJD3 histone

demethylase epigenetically activates mitochondrial fatty acid betaoxidation. J Clin Invest. 2018;128(7):3144–3159.

Cherkaoui-Malki M, Surapureddi S, El Hajj HI, Vamecq J,

Andreoletti P. Hepatic steatosis and peroxisomal fatty acid betaoxidation. Curr Drug Metabol. 2012;13(10):1412–1421.

Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver.

Compr Physiol. 2018;8(1):1–22.

www.thelancet.com Vol 86 December, 2022

34 Garofalo C, Borrelli S, Liberti ME, et al. SGLT2 inhibitors: nephroprotective efficacy and side effects. Medicina-Lithuania.

2019;55(6):13.

35 Sasaki T, Sugawara M, Fukuda M. Sodium-glucose cotransporter 2

inhibitor-induced changes in body composition and simultaneous

changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: the Components of Weight Loss in Japanese Patients with

Type 2 Diabetes Mellitus) Study. J Diabet Invest. 2019;10(1):108–

117.

36 Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of

fasting or calorie restriction on autophagy induction: a review of the

literature. Ageing Res Rev. 2018;47:183–197.

37 Inoue H, Morino K, Ugi S, et al. Ipragliflozin, a sodium-glucose

cotransporter 2 inhibitor, reduces bodyweight and fat mass, but

not muscle mass, in Japanese type 2 diabetes patients treated with

insulin: a randomized clinical trial. J Diabet Invest.

2019;10(4):1012–1021.

38 Brown E, Wilding JPH, Barber TM, Alam U, Cuthbertson DJ.

Weight loss variability with SGLT2 inhibitors and GLP-1 receptor

agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019;20(6):816–828.

39 Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to

sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.

40 Lee PC, Ganguly S, Goh SY. Weight loss associated with sodiumglucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19(12):1630–1641.

41 Layman DK. The role of leucine in weight loss diets and glucose

homeostasis. J Nutr. 2003;133(1):261S–267S.

42 Sano M, Meguro S, Kawai T, Suzuki Y. Increased grip strength

with sodium-glucose cotransporter 2. J Diabetes. 2016;8(5):736–

737.

43 Larsen M, Kristensen NB. Precursors for liver gluconeogenesis in

periparturient dairy cows. Animal. 2013;7(10):1640–1650.

44 Ghosh S, Zhao B, Bie JH, Song JM. Macrophage cholesteryl ester

mobilization and atherosclerosis. Vasc Pharmacol. 2010;52:1–10.

45 Newgard CB, An J, Bain JR, et al. A branched-chain amino acidrelated metabolic signature that differentiates obese and lean

humans and contributes to insulin resistance. Cell Metabol.

2009;9(4):311–326.

46 Woo SL, Yang JP, Hsu M, et al. Effects of branched-chain amino

acids on glucose metabolism in obese, prediabetic men and

women: a randomized, crossover study. Am J Clin Nutr.

2019;109(6):1569–1577.

47 Iwao M, Gotoh K, Arakawa M, et al. Supplementation of branchedchain amino acids decreases fat accumulation in the liver through

intestinal microbiota-mediated production of acetic acid. Sci Rep.

2020;10(1):11.

48 Omori K, Nakamura A, Miyoshi H, et al. Effects of dapagliflozin

and/or insulin glargine on beta cell mass and hepatic steatosis in

db/db mice. Metabolism. 2019;98:27–36.

49 Mulder S, Hammarstedt A, Nagaraj SB, et al. A metabolomicsbased molecular pathway analysis of how the sodium-glucose cotransporter-2 inhibitor dapagliflozin may slow kidney function

decline in patients with diabetes. Diabetes Obes Metabol.

2020;22(7):1157–1166.

50 Wu WKK, Zhang L, Chan MTV. In: Yu J, ed. Obesity, Fatty Liver and

Liver Cancer. Singapore: Springer-Verlag Singapore Pte Ltd;

2018:127–138.

51 Martinez-Lopez N, Singh R. In: Bowman BA, Stover PJ, eds.

Annual review of nutrition. vol. 35. 2015:215–237. Palo Alto: Annual

Reviews.

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る