リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure

岩田 和希子 横浜市立大学

2020.03.31

概要

Obesity can initiate and accelerate the progression of kidney diseases. However, it remains unclear how obesity affects renal dysfunction. Here, we show that a newly generated podo- cyte-specific tubular sclerosis complex 2 (Tsc2) knockout mouse model (Tsc2ǻpodocyte) devel- ops proteinuria and dies due to end-stage renal dysfunction by 10 weeks of age. Tsc2ǻpodocyte mice exhibit an increased glomerular size and focal segmental glomerulosclerosis, including podocyte foot process effacement, mesangial sclerosis and proteinaceous casts. Podocytes isolated from Tsc2ǻpodocyte mice show nuclear factor, erythroid derived 2, like 2-mediated increased oxidative stress response on microarray analysis and their autophagic activity is lowered through the mammalian target of rapamycin (mTOR)—unc-51-like kinase 1 pathway. Rapamycin attenuated podocyte dysfunction and extends survival in Tsc2ǻpodocyte mice. Addi- tionally, mTOR complex 1 (mTORC1) activity is increased in podocytes of renal biopsy speci- mens obtained from obese patients with chronic kidney disease. Our work shows that mTORC1 hyperactivation in podocytes leads to severe renal dysfunction and that inhibition of mTORC1 activity in podocytes could be a key therapeutic target for obesity-related kidney diseases.

この論文で使われている画像

参考文献

1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9 1 million participants. Lancet. 2011; 377(9765):557–567. https://doi.org/10.1016/S0140-6736(10)62037-5 PMID: 21295846

2. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endo- crinol. 2012; 9 (1):13–27. https://doi.org/10.1038/nrendo.2012.199 PMID: 23165161

3. Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008; 73(1):19–33. https://doi.org/10.1038/sj.ki. 5002586 PMID: 17928825

4. Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Ko¨ ttgen A, Levey AS, et al. Evolving importance of kid- ney disease: from subspecialty to global health burden. Lancet. 2013.; 382 (9887):158–169. https://doi. org/10.1016/S0140-6736(13)60439-0 PMID: 23727165

5. Maric-Bilkan C. Obesity and diabetic kidney disease. Med Clin North Am. 2013; 97(1):59–74. https:// doi.org/10.1016/j.mcna.2012.10.010 PMID: 23290730

6. Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 2013; 23(1) :53–62. https://doi.org/10.1016/j.gde.2012.12.005 PMID: 23317514

7. Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activa- tion of mTOR complex 2. Mol Cell Biol. 2008; 28(12):4104–4115. https://doi.org/10.1128/MCB.00289- 08 PMID: 18411301

8. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 13; 149(2):274293. https://doi.org/10.1016/j.cell.2012.03.017 PMID: 22500797

9. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamy- cin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resis- tance. Endocrinology. 2005; 146(3):1473–1481. https://doi.org/10.1210/en.2004-0921 PMID: 15604215

10. Catala´n V, Go´mez-Ambrosi J, Rodr´ıguez A, Ram´ırez B, Andrada P, Rotellar F, et al. Expression of S6K1 in human visceral adipose tissue is upregulated in obesity and related to insulin resistance and inflamma- tion. Acta Diabetol. 2015; 52(2):257–266. https://doi.org/10.1007/s00592-014-0632-9 PMID: 25118997

11. Morris BJ, Carnes BA, Chen R, Donlon TA, He Q, Grove JS, et al. Genetic variation in the raptor gene is associated with overweight but not hypertension in American men of Japanese ancestry. Am J Hyper- tens. 2015; 28(4):508–517. https://doi.org/10.1093/ajh/hpu188 PMID: 25249372

12. Lee PL, Tang Y, Li Huawei, Guertin DA. Raptor/mTORC1 loss in adipocytes causes progressive lipody- strophy and fatty liver disease. Mol Metab. 2016; 11; 5(6):422–432. https://doi.org/10.1016/j.molmet. 2016.04.001 PMID: 27257602

13. Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 2014; 3; 19(6):967–980. https://doi.org/10.1016/j.cmet.2014.03.018 PMID: 24746805

14. Xiang X, Lan H, Tang H, Yuan F, Xu Y, Zhao J, et al. Tuberous sclerosis complex 1-mechanistic target of rapamycin complex 1 signaling determines brown-to-white adipocyte phenotypic switch. Diabetes. 2015; 64(2):519–528. https://doi.org/10.2337/db14-0427 PMID: 25213336

15. Tran CM, Mukherjee S, Ye L, Frederick DW, Kissig M, Davis JG, et al. Rapamycin blocks induction of the thermogenic program in white adipose tissue. Diabetes. 2016; 65(4):927–941. https://doi.org/10. 2337/db15-0502 PMID: 26858361

16. Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, et al. Conditional and inducible trans- gene expression in mice through the combinatorial use of Cre-mediated recombination and tetracy- cline induction. Nucleic Acids Res. 2005; 33(5):e51. https://doi.org/10.1093/nar/gni051 PMID: 15784609

17. Shigeyama Y, Kobayashi T, Kido Y, Hashimoto N, Asahara S, Matsuda T, et al. Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol. 2008; 28 (9):2971–2979. https://doi.org/10.1128/MCB.01695-07 PMID: 18316403

18. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010; 8: e1000412. https://doi.org/10. 1371/journal.pbio.1000412 PMID: 20613859

19. Takahashi E, Okumura A, Unoki-Kubota H, Hirano H, Kasuga M, Kaburagi Y. Differential proteome analysis of serum proteins associated with the development of type 2 diabetes mellitus in the KK-Ay mouse model using the iTRAQ technique. J Proteomics. 2013; 84:40–51. https://doi.org/10.1016/j. jprot.2013.03.014 PMID: 23545169

20. Maric C, Sandberg K, Hinojosa-Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenu- ated with 17-estradiol in the aging dahl salt sensitive rat. J Am Soc Nephrol. 2004; 15 (6):1546–1556. https://doi.org/10.1097/01.asn.0000128219.65330.ea PMID: 15153565

21. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth- ods. 2012; 9(7):671–675. https://doi.org/10.1038/nmeth.2089 PMID: 22930834

22. Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, et al. A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol. 2002; 161(3):799–805. https://doi.org/10. 1016/S0002-9440(10)64239-3 PMID: 12213707

23. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15(3):1101–1111. https://doi.org/10.1091/mbc.E03-09-0704 PMID: 14699058

24. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activa- tion by oxidative stress. J Biol Chem. 2009; 284(20):13291–13295. https://doi.org/10.1074/jbc. R900010200 PMID: 19182219

25. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013; 51(5):618–631. https:// doi.org/10.1016/j.molcel.2013.08.003 PMID: 24011591

26. Mao J, Zeng Z, Xu Z, Li J, Jiang L, Fang Y, et al. Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. Am J Physiol Renal Physiol. 2014; 307(9): F1023– 1032. https://doi.org/10.1152/ajprenal.00018.2014 PMID: 24990893

27. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a criti- cal step in the development of diabetic nephropathy in mice. J Clin Invest. 2011; 121(6):2181–2196. https://doi.org/10.1172/JCI44771 PMID: 21606597

28. Go¨ del M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011; 121(6):2197–2209. https://doi.org/ 10.1172/JCI44774 PMID: 21606591

29. Taneike M, Nishida K, Omiya S, Zarrinpashneh E, Misaka T, Kitazume-Taneike R, et al. mTOR hyper- activation by ablation of tuberous sclerosis complex 2 in the mouse heart induces cardiac dysfunction with the increased number of small mitochondria mediated through the down-regulation of autophagy. PLoS One. 2016; 11(3) e0152628. https://doi.org/10.1371/journal.pone.0152628 PMID: 27023784

30. Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem. 2000; 69:303–342. https://doi.org/10.1146/annurev.biochem. 69.1.303 PMID: 10966461

31. Hartleben B, Go¨ del M, Meyer-Schwesinger C, Liu S, Ulrich T, Ko¨ bler S, et al. Autophagy influences glo- merular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010; 120(4):1084–1096. https://doi.org/10.1172/JCI39492 PMID: 20200449

32. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016; 65(3):755–767. https:// doi.org/10.2337/db15-0473 PMID: 26384385

33. Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013; 23(4):508–523. https://doi.org/10.1038/cr.2013.11 PMID: 23337583

34. Praga M, Herna´ndez E, Morales E, Campos AP, Valero MA, Mart´ınez MA, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2001; 16(9):1790–1798. https://doi.org/10.1093/ndt/16.9.1790 PMID: 11522860

35. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerg- ing epidemic. Kidney Int. 2001; 59(4):1498–1509. https://doi.org/10.1046/j.1523-1755.2001. 0590041498.x PMID: 11260414

36. Praga M, Morales E. Obesity, proteinuria and progression of renal failure. Curr Opin Nephrol Hypertens. 2006; 15(5):481–486. https://doi.org/10.1097/01.mnh.0000242172.06459.7c PMID: 16914959

37. Van der Heijden RA, Bijzet J, Meijers WC, Yakala GK, Kleemann R, Nguyen T.Q, et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age- dependent renal amyloidosis. Sci Rep. 2015; 5:16474. https://doi.org/10.1038/srep16474 PMID: 26563579

38. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014; 10(12):723–736. https://doi.org/10.1038/nrendo.2014.171 PMID: 25287287

39. Giesbertz P, Padberg I, Rein D, Ecker J, Ho¨ fle AS, Spanier B, et al. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia. 2015; 58(9):2133–2143. https://doi.org/10.1007/s00125-015-3656-y PMID: 26058503

40. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007; 293(6):E1552–E1563. https://doi.org/10.1152/ajpendo.00134. 2007 PMID: 17925455

41. Wu Y, Liu Z, Xiang Z, Zeng C, Chen Z, Ma X, et al. Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology. 2006; 147 (1) :44–50. https://doi.org/10.1210/en.2005-0641 PMID: 16210374

42. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKK beta suppression of TSC1 links inflam- mation and tumor angiogenesis via the mTOR pathway. Cell. 2007; 10; 130(3):440–455. https://doi.org/ 10.1016/j.cell.2007.05.058 PMID: 17693255

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る