リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Capturing human trophoblast development with naive pluripotent stem cells in vitro」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Capturing human trophoblast development with naive pluripotent stem cells in vitro

Io, Shingo 京都大学 DOI:10.14989/doctor.k23569

2021.11.24

概要

胎盤は母児の健康に欠かすことができない臓器である。胎盤機能が不全状態に陥ると、流産、胎児発育不全や妊娠高血圧症候群に至り、胎児のみならず、母体にも深刻な影響を引き起こす。しかし、これらの胎盤機能不全の発症機序は明らかにされておらず、胎盤機能不全の治療は進展していない。様々な妊娠合併症の発症機序を解明するためには、正常な胎盤の形成過程や機能の維持機構を分子レベルで理解することが重要である。これまで胎盤研究で主に用いられてきた絨毛癌細胞株や不死化細胞株は生体の栄養膜細胞とは性質が異なり、これらを用いた研究成果をそのまま正常細胞へ適用できなかった。本研究では、ヒトナイーブ型多能性幹細胞をモデルとして、胎盤の主要な機能を担う栄養膜細胞の分化過程を試験管内で再現することを目的とした。

プライム型多能性細胞を初期化し、得られたナイーブ型多能性幹細胞を 4 種の化合物を加えた無血清培地で培養し、栄養外胚葉を樹立した。化合物の組合せを段階的に変更し、栄養外胚葉から細胞性栄養膜細胞を経て、合胞体栄養膜細胞と絨毛外栄養膜細胞へ分化させた。多能性幹細胞由来の細胞性栄養膜細胞が妊娠初期栄養膜細胞の基準を満たすかを検討した。さらに、トランスクリプトーム解析を用いて、生体の栄養膜細胞と比較検討した。ヒトおよび非ヒト霊長類であるカニクイザルの単一細胞遺伝子発現解析法を指標とし、ヒトナイーブ型多能性幹細胞を由来とする栄養外胚葉と細胞性栄養膜細胞の遺伝子発現を検討した。さらに、プライム型多能性幹細胞を用いた栄養膜細胞の分化誘導も行い、ナイーブ型多能性幹細胞由来の栄養膜細胞との差異を検討した。

トランスクリプトーム解析により、ナイーブ型多能性幹細胞から樹立した栄養外胚葉と細胞性栄養膜細胞は、それぞれの生体の栄養膜細胞段階に類似していた。3 種の化合物を加えることで、細胞性栄養膜細胞は長期培養が可能であった。さらに、この細胞は妊娠初期栄養膜細胞の基準を満たしていた。ナイーブ型多能性幹細胞から分化させた合胞体栄養膜細胞と絨毛外栄養膜細胞は、細胞段階特異的タンパク質の hCG と HLA-G をそれぞれ発現していた。着床後胚の性質を示すプライム型多能性幹細胞を用いた栄養膜細胞の分化誘導を行ったが、この細胞は生体の栄養膜細胞とは特徴が異なり、羊膜上皮細胞に類似した遺伝子発現パターンを示すことを同定した。

ナイーブ型多能性幹細胞は栄養膜細胞系列への分化が可能であった。ナイーブ型多能性幹細胞由来の栄養外胚葉から細胞性栄養膜細胞までの遺伝子発現の変化は、ヒト受精卵の試験管内培養の結果と類似しており、ヒト栄養膜細胞の着床期研究に応用可能なモデルであると考えられた。

本研究はヒトナイーブ型多能性幹細胞をモデルとして、栄養膜細胞の起源から終末分化段階までの試験管内再現に成功した。

この論文で使われている画像

関連論文

参考文献

Amita, M., Adachi, K., Alexenko, A.P., Sinha, S., Schust, D.J., Schulz, L.C., Roberts, R.M., and Ezashi, T. (2013). Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc. Natl. Acad. Sci. USA 110, E1212–E1221.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169.

Benirschke, K., Burton, G.J., and Baergen, R.N. (2012). Basic Structure of the Villous Trees. Pathology of the Human Placenta (Springer), pp. 55–100.

Bernardo, A.S., Faial, T., Gardner, L., Niakan, K.K., Ortmann, D., Senner, C.E., Callery, E.M., Trotter, M.W., Hemberger, M., Smith, J.C., et al. (2011). BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9, 144–155.

Blakeley, P., Fogarty, N.M., del Valle, I., Wamaitha, S.E., Hu, T.X., Elder, K., Snell, P., Christie, L., Robson, P., and Niakan, K.K. (2015). Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165.

Burton, G.J., and Jauniaux, E. (2017). The cytotrophoblastic shell and compli- cations of pregnancy. Placenta 60, 134–139.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technol- ogies, and species. Nat. Biotechnol. 36, 411–420.

Castel, G., Meistermann, D., Bretin, B., Firmin, J., Blin, J., Loubersac, S., Bruneau, A., Chevolleau, S., Kilens, S., Chariau, C., et al. (2020). Induction of Human Trophoblast Stem Cells from Somatic Cells and Pluripotent Stem Cells. Cell Rep. 33, 108419.

Chang, C.W., and Parast, M.M. (2017). Human trophoblast stem cells: Real or not real? Placenta 60 (Suppl 1 ), S57–S60.

Chen, A.E., Egli, D., Niakan, K., Deng, J., Akutsu, H., Yamaki, M., Cowan, C., Fitz-Gerald, C., Zhang, K., Melton, D.A., and Eggan, K. (2009). Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4, 103–106.

Cindrova-Davies, T., Jauniaux, E., Elliot, M.G., Gong, S., Burton, G.J., and Charnock-Jones, D.S. (2017). RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc. Natl. Acad. Sci. USA 114, E4753–E4761.

Cinkornpumin, J.K., Kwon, S.Y., Guo, Y., Hossain, I., Sirois, J., Russett, C.S., Tseng, H.W., Okae, H., Arima, T., Duchaine, T.F., et al. (2020). Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Reports 15, 198–213.

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

Deglincerti, A., Croft, G.F., Pietila, L.N., Zernicka-Goetz, M., Siggia, E.D., and Brivanlou, A.H. (2016). Self-organization of the in vitro attached human em- bryo. Nature 533, 251–254.

Dong, C., Beltcheva, M., Gontarz, P., Zhang, B., Popli, P., Fischer, L.A., Khan, S.A., Park, K.M., Yoon, E.J., Xing, X., et al. (2020). Derivation of trophoblast stem cells from na¨ıve human pluripotent stem cells. eLife 9, e52504.

Faulk, W.P., and Temple, A. (1976). Distribution of b2 microglobulin and HLA in chorionic villi of human placentae. Nature 262, 799–802.

Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47 (D1), D766–D773.

Frias-Aldeguer, J., Kip, M., Vivie´ , J., Li, L., Alemany, A., Korving, J., Darmis, F., van Oudenaarden, A., Geijsen, N., and Rivron, N.C. (2020). Embryonic signals perpetuate polar-like trophoblast stem cells and pattern the blastocyst axis. bioRxiv. https://doi.org/10.1101/510362.

Gao, X., Nowak-Imialek, M., Chen, X., Chen, D., Herrmann, D., Ruan, D., Chen, A.C.H., Eckersley-Maslin, M.A., Ahmad, S., Lee, Y.L., et al. (2019). Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699.

Goodfellow, P.N., Barnstable, C.J., Bodmer, W.F., Snary, D., and Crumpton, M.J. (1976). Expression of HLA system antigens on placenta. Transplantation 22, 595–603.

Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A., and Nichols, J. (2016). Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports 6, 437–446.

Guo, G., von Meyenn, F., Rostovskaya, M., Clarke, J., Dietmann, S., Baker, D., Sahakyan, A., Myers, S., Bertone, P., Reik, W., et al. (2017). Epigenetic reset- ting of human pluripotency. Development 144, 2748–2763.

Guo, G., Stirparo, G.G., Strawbridge, S.E., Spindlow, D., Yang, J., Clarke, J., Dattani, A., Yanagida, A., Li, M.A., and Myers, S. (2021). Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28, this issue, 1040–1056.

Haider, S., Meinhardt, G., Saleh, L., Kunihs, V., Gamperl, M., Kaindl, U., Ellinger, A., Burkard, T.R., Fiala, C., Pollheimer, J., et al. (2018). Self- Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports 11, 537–551.

Hammer, A., Hutter, H., Blaschitz, A., Mahnert, W., Hartmann, M., Uchanska- Ziegler, B., Ziegler, A., and Dohr, G. (1997). Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am. J. Reprod. Immunol. 37, 161–171.

Horii, M., Bui, T., Touma, O., Cho, H.Y., and Parast, M.M. (2019). An Improved Two-Step Protocol for Trophoblast Differentiation of Human Pluripotent Stem Cells. Curr. Protoc. Stem Cell Biol. 50, e96.

Huang, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integra- tive analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

Hunt, J.S., Petroff, M.G., McIntire, R.H., and Ober, C. (2005). HLA-G and im- mune tolerance in pregnancy. FASEB J. 19, 681–693.

Hyun, I., Munsie, M., Pera, M.F., Rivron, N.C., and Rossant, J. (2020). Toward Guidelines for Research on Human Embryo Models Formed from Stem Cells. Stem Cell Reports 14, 169–174.

Jokimaa, V., Inki, P., Kujari, H., Hirvonen, O., Ekholm, E., and Anttila, L. (1998). Expression of syndecan-1 in human placenta and decidua. Placenta 19, 157–163.

Kawata, M., Parnes, J.R., and Herzenberg, L.A. (1984). Transcriptional control of HLA-A,B,C antigen in human placental cytotrophoblast isolated using trophoblast- and HLA-specific monoclonal antibodies and the fluorescence- activated cell sorter. J. Exp. Med. 160, 633–651.

Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph- based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915.

Kuckenberg, P., Buhl, S., Woynecki, T., van Fu€rden, B., Tolkunova, E., Seiffe, F., Moser, M., Tomilin, A., Winterhager, E., and Schorle, H. (2010). The tran- scription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain tro- phectoderm formation. Mol. Cell. Biol. 30, 3310–3320.

Kunath, T., Yamanaka, Y., Detmar, J., MacPhee, D., Caniggia, I., Rossant, J., and Jurisicova, A. (2014). Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 35, 1079–1088.

Lee, C.Q., Gardner, L., Turco, M., Zhao, N., Murray, M.J., Coleman, N., Rossant, J., Hemberger, M., and Moffett, A. (2016). What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast. Stem Cell Reports 6, 257–272.

Lee, C.Q.E., Turco, M.Y., Gardner, L., Simons, B.D., Hemberger, M., and Moffett, A. (2018). Integrin a2 marks a niche of trophoblast progenitor cells in first trimester human placenta. Development 145, dev162305.

Ma, H., Zhai, J., Wan, H., Jiang, X., Wang, X., Wang, L., Xiang, Y., He, X., Zhao, Z.A., Zhao, B., et al. (2019). In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890.

Malhotra, S.S., Banerjee, P., and Gupta, S.K. (2016). Regulation of trophoblast differentiation during embryo implantation and placentation: Implications in pregnancy complications. J. Reprod. Health Med. 2, S26–S36.

Martin, M. (2011). Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet.journal 17, 10–12.

McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression anal- ysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297.

Meistermann, D., Loubersac, S., Reignier, A., Firmin, J., Campion, V.F., Kilens, S., Lelie` vre, Y., Lammers, J., Feyeux, M., Hulin, P., et al. (2019). Spatio-tempo- ral analysis of human preimplantation development reveals dynamics of epiblast and trophectoderm. bioRxiv. https://doi.org/10.1101/604751.

Mu€hlhauser, J., Crescimanno, C., Kaufmann, P., Ho¨ fler, H., Zaccheo, D., and Castellucci, M. (1993). Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41, 165–173.

Nakamura, T., Yabuta, Y., Okamoto, I., Aramaki, S., Yokobayashi, S., Kurimoto, K., Sekiguchi, K., Nakagawa, M., Yamamoto, T., and Saitou, M. (2015). SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 43, e60.

Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice, monkeys and hu- mans. Nature 537, 57–62.

Nakamura, T., Yabuta, Y., Okamoto, I., Sasaki, K., Iwatani, C., Tsuchiya, H., and Saitou, M. (2017). Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys. Sci. Data 4, 170067.

Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distin- guish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410.

Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., and Rossant, J. (2005). Interaction between Oct3/4 and Cdx2 determines trophec- toderm differentiation. Cell 123, 917–929.

Okae, H., Toh, H., Sato, T., Hiura, H., Takahashi, S., Shirane, K., Kabayama, Y., Suyama, M., Sasaki, H., and Arima, T. (2018). Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 22, 50–63.e6.

Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412.

Perez-Garcia, V., Fineberg, E., Wilson, R., Murray, A., Mazzeo, C.I., Tudor, C., Sienerth, A., White, J.K., Tuck, E., Ryder, E.J., et al. (2018). Placentation de- fects are highly prevalent in embryonic lethal mouse mutants. Nature 555, 463–468.

Petropoulos, S., Edsga€rd, D., Reinius, B., Deng, Q., Panula, S.P., Codeluppi, S., Plaza Reyes, A., Linnarsson, S., Sandberg, R., and Lanner, F. (2016). Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 165, 1012–1026.

Plouzek, C.A., Leslie, K.K., Stephens, J.K., and Chou, J.Y. (1993). Differential gene expression in the amnion, chorion, and trophoblast of the human placenta. Placenta 14, 277–285.

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017). Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982.

Roost, M.S., van Iperen, L., Ariyurek, Y., Buermans, H.P., Arindrarto, W., Devalla, H.D., Passier, R., Mummery, C.L., Carlotti, F., de Koning, E.J., et al. (2015). KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas. Stem Cell Reports 4, 1112–1124.

Rumer, K.K., Post, M.D., Larivee, R.S., Zink, M., Uyenishi, J., Kramer, A., Teoh, D., Bogart, K., and Winn, V.D. (2012). Siglec-6 is expressed in gestational trophoblastic disease and affects proliferation, apoptosis and invasion. Endocr. Relat. Cancer 19, 827–840.

Sawai, T., Minakawa, T., Pugh, J., Akatsuka, K., Yamashita, J.K., and Fujita, M. (2020). The moral status of human embryo-like structures: potentiality mat- ters?: The moral status of human synthetic embryos. EMBO Rep. 21, e50984.

Senner, C.E., and Hemberger, M. (2010). Regulation of early trophoblast differ- entiation - lessons from the mouse. Placenta 31, 944–950.

Shahbazi, M.N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A., Bolton, V., Fogarty, N.N.M., Campbell, A., Devito, L., Ilic, D., et al. (2016). Self-organi- zation of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708.

Stirparo, G.G., Boroviak, T., Guo, G., Nichols, J., Smith, A., and Bertone, P. (2018). Integrated analysis of single-cell embryo data yields a unified transcrip- tome signature for the human pre-implantation epiblast. Development 145, dev158501.

Strom, S.C., and Gramignoli, R. (2016). Human amnion epithelial cells express- ing HLA-G as novel cell-based treatment for liver disease. Hum. Immunol. 77, 734–739.

Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., et al. (2014). Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269.

Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A., and Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075.

Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A., Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic identification of culture conditions for induction and maintenance of naive hu- man pluripotency. Cell Stem Cell 15, 471–487.

Theunissen, T.W., Friedli, M., He, Y., Planet, E., O’Neil, R.C., Markoulaki, S., Pontis, J., Wang, H., Iouranova, A., Imbeault, M., et al. (2016). Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515.

Thiede, H.A., and Choate, J.W. (1963). Chorionic Gonadotropin Localization in the Human Placenta by Immunofluorescent Staining. II. Demonstration of Hcg in the Trophoblast and Amnion Epithelium of Immature and Mature Placentas. Obstet. Gynecol. 22, 433–443.

Thiede, H.A., and Fierer, M.B. (1966). Detection of HCG in the amnion by bio- logic and immunologic assay. Obstet. Gynecol. 27, 363–368.

Turco, M.Y., Gardner, L., Kay, R.G., Hamilton, R.S., Prater, M., Hollinshead, M.S., McWhinnie, A., Esposito, L., Fernando, R., Skelton, H., et al. (2018). Trophoblast organoids as a model for maternal-fetal interactions during hu- man placentation. Nature 564, 263–267.

Vento-Tormo, R., Efremova, M., Botting, R.A., Turco, M.Y., Vento-Tormo, M., Meyer, K.B., Park, J.-E., Stephenson, E., Polan´ski, K., Goncalves, A., et al. (2018). Single-cell reconstruction of the early maternal-fetal interface in hu- mans. Nature 563, 347–353.

Wolf, D.P., Thormahlen, S., Ramsey, C., Yeoman, R.R., Fanton, J., and Mitalipov, S. (2004). Use of assisted reproductive technologies in the propaga- tion of rhesus macaque offspring. Biol. Reprod. 71, 486–493.

Wong, C.C., Loewke, K.E., Bossert, N.L., Behr, B., De Jonge, C.J., Baer, T.M., and Reijo Pera, R.A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.

Xiang, L., Yin, Y., Zheng, Y., Ma, Y., Li, Y., Zhao, Z., Guo, J., Ai, Z., Niu, Y., Duan, K., et al. (2020). A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542.

Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4 initiates human embryonic stem cell differentia- tion to trophoblast. Nat. Biotechnol. 20, 1261–1264.

Yamasaki, J., Iwatani, C., Tsuchiya, H., Okahara, J., Sankai, T., and Torii, R. (2011). Vitrification and transfer of cynomolgus monkey (Macaca fascicularis) embryos fertilized by intracytoplasmic sperm injection. Theriogenology 76, 33–38.

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et al. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139.

Yang, Y., Adachi, K., Sheridan, M.A., Alexenko, A.P., Schust, D.J., Schulz, L.C., Ezashi, T., and Roberts, R.M. (2015). Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc. Natl. Acad. Sci. USA 112, E2337–E2346.

Zheng, Y., Xue, X., Shao, Y., Wang, S., Esfahani, S.N., Li, Z., Muncie, J.M., Lakins, J.N., Weaver, V.M., Gumucio, D.L., and Fu, J. (2019). Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425.

Zhou, F., Wang, R., Yuan, P., Ren, Y., Mao, Y., Li, R., Lian, Y., Li, J., Wen, L., Yan, L., et al. (2019). Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る