リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface.

Bhaswati Bhattacharya Pratik Home Avishek Ganguly Soma Ray Ananya Ghosh Md Rashedul Islam Valerie French Courtney Marsh Sumedha Gunewardena Hiroaki Okae Takahiro Arima Soumen Paul 東北大学 DOI:10.1073/pnas.1920201117

2020.06.08

概要

In utero mammalian development relies on the establishment of the maternal–fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal–fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.

この論文で使われている画像

参考文献

1. K. Cockburn, J. Rossant, Making the blastocyst: Lessons from the mouse. J. Clin. Invest. 120, 995–1003 (2010).

2. R. M. Roberts, S. J. Fisher, Trophoblast stem cells. Biol. Reprod. 84, 412–421 (2011).

3. J. Rossant, J. C. Cross, Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548 (2001).

4. P. L. Pfeffer, D. J. Pearton, Trophoblast development. Reproduction 143, 231–246 (2012).

5. C. W. Redman, I. L. Sargent, Latest advances in understanding preeclampsia. Science 308, 1592–1594 (2005).

6. L. Myatt, Placental adaptive responses and fetal programming. J. Physiol. 572, 25–30 (2006).

7. P. D. Gluckman, M. A. Hanson, C. Cooper, K. L. Thornburg, Effect of in utero and earlylife conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

8. K. M. Godfrey, D. J. Barker, Fetal nutrition and adult disease. Am. J. Clin. Nutr. 71 (suppl. 5), 1344S–1352S (2000).

9. E. F. Funai et al., Long-term mortality after preeclampsia. Epidemiology 16, 206–215 (2005).

10. A. M. Carter, Animal models of human placentation—a review. Placenta 28, S41–S47 (2007).

11. J. Rossant, Stem cells from the mammalian blastocyst. Stem Cells 19, 477–482 (2001).

12. D. G. Simmons, A. L. Fortier, J. C. Cross, Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev. Biol. 304, 567–578 (2007).

13. D. G. Simmons, J. C. Cross, Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev. Biol. 284, 12–24 (2005).

14. P. Kaufmann, S. Black, B. Huppertz, Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol. Reprod. 69, 1–7 (2003).

15. G. X. Rosario, T. Konno, M. J. Soares, Maternal hypoxia activates endovascular trophoblast cell invasion. Dev. Biol. 314, 362–375 (2008).

16. M. J. Soares et al., Regulatory pathways controlling the endovascular invasive trophoblast cell lineage. J. Reprod. Dev. 58, 283–287 (2012).

17. D. G. Simmons et al., Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 135, 2083–2091 (2008).

18. E. Basyuk et al., Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev. Dyn. 214, 303–311 (1999).

19. M. Knofler et al., Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479–3496 (2019).

20. J. L. James, A. M. Carter, L. W. Chamley, Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta 33, 327–334 (2012).

21. A. L. Boss, L. W. Chamley, J. L. James, Placental formation in early pregnancy: How is the centre of the placenta made? Hum. Reprod. Update 24, 750–760 (2018).

22. S. Haider et al., Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc. Natl. Acad. Sci. U.S.A. 113, E7710–E7719 (2016).

23. A. E. Beer, J. O. Sio, Placenta as an immunological barrier. Biol. Reprod. 26, 15–27 (1982).

24. M. Yang, Z. M. Lei, C. Rao, The central role of human chorionic gonadotropin in the formation of human placental syncytium. Endocrinology 144, 1108–1120 (2003).

25. M. A. Costa, The endocrine function of human placenta: An overview. Reprod. Biomed. Online 32, 14–43 (2016).

26. L. A. Cole, hCG, the wonder of today’s science. Reprod. Biol. Endocrinol. 10, 24 (2012).

27. M. PrabhuDas et al., Immune mechanisms at the maternal–fetal interface: Perspectives and challenges. Nat. Immunol. 16, 328–334 (2015).

28. L. W. Chamley et al., Review: Where is the maternofetal interface? Placenta 35, S74–S80 (2014).

29. J. Rossant, Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin. Cell Dev. Biol. 15, 573–581 (2004).

30. B. Stecca et al., Gcm1 expression defines three stages of chorio-allantoic interaction during placental development. Mech. Dev. 115, 27–34 (2002).

31. L. Anson-Cartwright et al., The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet. 25, 311–314 (2000).

32. M. M. Parast et al., PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation. PLoS One 4, e8055 (2009).

33. P. Home et al., Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 144, 876–888 (2017).

34. H. Okae et al., Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).

35. M. Zhu, C. Y. Leung, M. N. Shahbazi, M. Zernicka-Goetz, Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8, 921 (2017).

36. D. Dutta et al., Self-renewal versus lineage commitment of embryonic stem cells: Protein kinase C signaling shifts the balance. Stem Cells 29, 618–628 (2011).

37. G. Rajendran et al., Inhibition of protein kinase C signaling maintains rat embryonic stem cell pluripotency. J. Biol. Chem. 288, 24351–24362 (2013).

38. B. Mahato et al., Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-λ/ι: A novel mode of balancing pluripotency. Stem Cells 32, 2880–2892 (2014).

39. M. Leitges et al., Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol. Cell 8, 771–780 (2001).

40. R. S. Soloff, C. Katayama, M. Y. Lin, J. R. Feramisco, S. M. Hedrick, Targeted deletion of protein kinase C lambda reveals a distribution of functions between the two atypical protein kinase C isoforms. J. Immunol. 173, 3250–3260 (2004).

41. S. Seidl et al., Phenotypical analysis of atypical PKCs in vivo function display a compensatory system at mouse embryonic day 7.5. PLoS One 8, e62756 (2013).

42. N. Saiz, J. B. Grabarek, N. Sabherwal, N. Papalopulu, B. Plusa, Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst. Development 140, 4311–4322 (2013).

43. A. Dupressoir et al., Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl. Acad. Sci. U.S.A. 106, 12127–12132 (2009).

44. A. Nagai, K. Takebe, J. Nio-Kobayashi, H. Takahashi-Iwanaga, T. Iwanaga, Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice. Placenta 31, 126–133 (2010).

45. D. S. Lee, M. A. Rumi, T. Konno, M. J. Soares, In vivo genetic manipulation of the rat trophoblast cell lineage using lentiviral vector delivery. Genesis 47, 433–439 (2009).

46. P. Home et al., Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc. Natl. Acad. Sci. U.S.A. 109, 7362–7367 (2012).

47. D. Strumpf et al., Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

48. A. P. Russ et al., Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

49. P. A. Latos et al., Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells. Nat. Commun. 6, 7776 (2015).

50. M. Donnison et al., Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132, 2299–2308 (2005).

51. V. Nadeau et al., Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development 136, 1363–1374 (2009).

52. B. Lichtner, P. Knaus, H. Lehrach, J. Adjaye, BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells. Biomaterials 34, 9789–9802 (2013).

53. B. Mikic, K. Rossmeier, L. Bierwert, Identification of a tendon phenotype in GDF6 deficient mice. Anat. Rec. (Hoboken) 292, 396–400 (2009).

54. D. E. Clendenning, D. P. Mortlock, The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One 7, e36789 (2012).

55. S. L. Withington et al., Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev. Biol. 294, 67–82 (2006).

56. J. D. Aplin et al., IFPA Meeting 2016 Workshop Report III: Decidua-trophoblast interactions; trophoblast implantation and invasion; immunology at the maternal–fetal interface; placental inflammation. Placenta 60 (suppl. 1), S15–S19 (2017).

57. M. Pavlicev ˇ et al., Single-cell transcriptomics of the human placenta: Inferring the cell communication network of the maternal–fetal interface. Genome Res. 27, 349–361 (2017).

58. J. Schreiber et al., Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol. Cell. Biol. 20, 2466–2474 (2000).

59. M. I. Morasso, A. Grinberg, G. Robinson, T. D. Sargent, K. A. Mahon, Placental failure in mice lacking the homeobox gene Dlx3. Proc. Natl. Acad. Sci. U.S.A. 96, 162–167 (1999).

60. J. Milano-Foster et al., Regulation of human trophoblast syncytialization by histone demethylase LSD1. J. Biol. Chem. 294, 17301–17313 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る