リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The 14-3-3γ isoform binds to and regulates the localization of endoplasmic reticulum (ER) membrane protein TMCC3 for the reticular network of the ER」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The 14-3-3γ isoform binds to and regulates the localization of endoplasmic reticulum (ER) membrane protein TMCC3 for the reticular network of the ER

Suhda, Saihas Yamamoto, Yasunori Wisesa, Sindhu Sada, Risa Sakisaka, Toshiaki 神戸大学

2023.02

概要

The reticular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions and undergoes constant remodeling through formation and loss of the three-way junctions. Transmembrane and coiled-coil domain family 3 (TMCC3), an ER membrane protein localizing at three-way junctions, has been shown to positively regulate formation of the reticular ER network. However, elements that negatively regulate TMCC3 localization have not been characterized. In this study, we report that 14-3-3γ, a phospho-serine/phospho-threonine-binding protein involved in various signal transduction pathways, is a negative regulator of TMCC3. We demonstrate that overexpression of 14-3-3γ reduced localization of TMCC3 to three-way junctions and decreased the number of three-way junctions. TMCC3 bound to 14-3-3γ through the N terminus and had deduced 14-3-3 binding motifs. Additionally, we determined that a TMCC3 mutant substituting alanine for serine to be phosphorylated in the binding motif reduced binding to 14-3-3γ. The TMCC3 mutant was more prone than wildtype TMCC3 to localize at three-way junctions in the cells overexpressing 14-3-3γ. Furthermore, the TMCC3 mutant rescued the ER sheet expansion caused by TMCC3 knockdown less than wild-type TMCC3. Taken together, these results indicate that 14-3-3γ binding negatively regulates localization of TMCC3 to the three-way junctions for the proper reticular ER network, implying that the negative regulation of TMCC3 by 14-3-3γ would underlie remodeling of the reticular network of the ER.

この論文で使われている画像

参考文献

1. Baumann, O., and Walz, B. (2001) Endoplasmic reticulum of animal cells

and its organization into structural and functional domains. Int. Rev.

Cytol. 205, 149–214

2. Lynes, E. M., and Simmen, T. (2011) Urban planning of the endoplasmic

reticulum (ER): how diverse mechanisms segregate the many functions of

the ER. Biochim. Biophys. Acta 1813, 1893–1905

3. Lamb, C. A., Yoshimori, T., and Tooze, S. A. (2013) The autophagosome:

origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14,

759–974

4. Joshi, A. S., Zhang, H., and Prinz, W. A. (2017) Organelle biogenesis in

the endoplasmic reticulum. Nat. Cell Biol. 19, 876–882

5. Aridor, M. (2018) COPII gets in shape: lessons derived from morphological aspects of early secretion. Traffic 19, 823–839

6. Shao, S., and Hegde, R. S. (2011) Membrane protein insertion at the

endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25–56

J. Biol. Chem. (2023) 299(2) 102813

11

Regulation of TMCC3 localization by 14-3-3γ binding

7. Yamamoto, Y., and Sakisaka, T. (2015) The emerging role of calciummodulating cyclophilin ligand in posttranslational insertion of tailanchored proteins into the endoplasmic reticulum membrane. J. Biochem. 157, 419–429

8. Walter, P., and Ron, D. (2011) The unfolded protein response: from stress

pathway to homeostatic regulation. Science 334, 1081–1086

9. Fagone, P., and Jackowski, S. (2009) Membrane phospholipid synthesis

and endoplasmic reticulum function. J. Lipid Res. 50, S311–S316

10. Shibata, Y., Voeltz, G. K., and Rapoport, T. A. (2006) Rough sheets and

smooth tubules. Cell 126, 435–439

11. Shibata, Y., Hu, J., Kozlov, M. M., and Rapoport, T. A. (2009) Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev.

Biol. 25, 329–354

12. Goyal, U., and Blackstone, C. (2013) Untangling the web: mechanisms

underlying ER network formation. Biochim. Biophys. Acta 1833,

2492–2498

13. Schwarz, D. S., and Blower, M. D. (2016) The endoplasmic reticulum:

structure, function and response to cellular signaling. Cell Mol. Life Sci.

73, 79–94

14. Zhang, H., and Hu, J. (2016) Shaping the endoplasmic reticulum into a

social network. Trends Cell Biol. 26, 934–943

15. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M., and Rapoport, T. A.

(2006) A class of membrane proteins shaping the tubular endoplasmic

reticulum. Cell 124, 573–586

16. Park, S. H., and Blackstone, C. (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO

Rep. 11, 515–521

17. Hu, J., and Rapoport, T. A. (2016) Fusion of the endoplasmic reticulum by

membrane-bound GTPases. Semin. Cell Dev. Biol. 60, 105–111

18. Wang, N., and Rapoport, T. A. (2019) Reconstituting the reticular ER

network – mechanistic implications and open questions. J. Cell Sci. 132,

jcs227611

19. Shibata, Y., Voss, C., Rist, J. M., Hu, J., Rapoport, T. A., Prinz, W. A., et al.

(2008) The reticulon and DP1/Yop1p proteins form immobile oligomers

in the tubular endoplasmic reticulum. J. Biol. Chem. 283, 18892–18904

20. Yamamoto, Y., and Sakisaka, T. (2018) The peroxisome biogenesis factors

posttranslationally target reticulon homology domain-containing proteins

to the endoplasmic reticulum membrane. Sci. Rep. 8, 2322

21. Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., et al. (2008)

Membrane proteins of the endoplasmic reticulum induce high-curvature

tubules. Science 319, 1247–1250

22. Zurek, N., Sparks, L., and Voeltz, G. (2011) Reticulon short hairpin

transmembrane domains are used to shape ER tubules. Traffic 12, 28–41

23. Hu, J., Shibata, Y., Zhu, P. P., Voss, C., Rismanchi, N., Prinz, W. A., et al.

(2009) A class of dynamin-like GTPases involved in the generation of the

tubular ER network. Cell 138, 549–561

24. Orso, G., Pendin, D., Liu, S., Tosetto, J., Moss, T. J., Faust, J. E., et al.

(2009) Homotypic fusion of ER membranes requires the dynamin-like

GTPase atlastin. Nature 460, 978–983

25. McNew, J. A., Sondermann, H., Lee, T., Stern, M., and Brandizzi, F.

(2013) GTP-dependent membrane fusion. Annu. Rev. Cell Dev. Biol. 29,

529–550

26. Bian, X., Klemm, R. W., Liu, T. Y., Zhang, M., Sun, S., Sui, X., et al. (2011)

Structures of the atlastin GTPase provide insight into homotypic fusion of

endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. U. S. A. 108,

3976–3981

27. Saini, S. G., Liu, C., Zhang, P., and Lee, T. H. (2014) Membrane tethering

by the atlastin GTPase depends on GTP hydrolysis but not on forming

the cross-over configuration. Mol. Biol. Cell 25, 3942–3953

28. Chen, S., Desai, T., McNew, J. A., Gerard, P., Novick, P. J., and FerroNovick, S. (2015) Lunapark stabilizes nascent three-way junctions in the

endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 112, 418–423

29. Shemesh, T., Klemm, R. W., Romano, F. B., Wang, S., Vaughan, J.,

Zhuang, X., et al. (2014) A model for the generation and interconversion

of ER morphologies. Proc. Natl. Acad. Sci. U. S. A. 111, E5243–E5251

30. Casey, A. K., Chen, S., Novick, P., Ferro-Novick, S., and Wente, S. R.

(2015) Nuclear pore complex integrity requires Lnp1, a regulator of

cortical endoplasmic reticulum. Mol. Biol. Cell 26, 2833–2844

12 J. Biol. Chem. (2023) 299(2) 102813

31. Wang, S., Tukachinsky, H., Romano, F. B., and Rapoport, T. A. (2016)

Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons

to generate a tubular membrane network. Elife 5, 18605

32. Yamamoto, Y., Yoshida, A., Miyazaki, N., Iwasaki, K., and Sakisaka, T.

(2014) Arl6IP1 has the ability to shape the mammalian ER membrane in a

reticulon-like fashion. Biochem. J. 458, 69–79

33. Chang, J., Lee, S., and Blackstone, C. (2013) Protrudin binds atlastins and

endoplasmic reticulum-shaping proteins and regulates network formation. Proc. Natl. Acad. Sci. U. S. A. 110, 14954–14959

34. Hashimoto, Y., Shirane, M., Matsuzaki, F., Saita, S., Ohnishi, T., and

Nakayama, K. I. (2014) Protrudin regulates endoplasmic reticulum

morphology and function associated with the pathogenesis of hereditary

spastic paraplegia. J. Biol. Chem. 289, 12946–12961

35. Mannan, A. U., Krawen, P., Sauter, S. M., Boehm, J., Chronowska, A.,

Paulus, W., et al. (2006) ZFYVE27 (SPG33), a novel spastin-binding

protein, is mutated in hereditary spastic paraplegia. Am. J. Hum. Genet.

79, 351–357

36. Novarino, G., Fenstermaker, A. G., Zaki, M. S., Hofree, M., Silhavy, J. L.,

Heiberg, A. D., et al. (2014) Exome sequencing links corticospinal motor

neuron disease to common neurodegenerative disorders. Science 343,

506–511

37. Lo Giudice, T., Lombardi, F., Santorelli, F. M., Kawarai, T., and Orlacchio, A. (2014) Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp. Neurol. 261, 518–539

38. Hübner, C. A., and Kurth, I. (2014) Membrane-shaping disorders: a

common pathway in axon degeneration. Brain 137, 3109–3121

39. Christodoulou, A., Santarella-Mellwig, R., Santama, N., and Mattaj, I. W.

(2016) Transmembrane protein TMEM170A is a newly discovered

regulator of ER and nuclear envelope morphogenesis in human cells. J.

Cell Sci. 129, 1552–1565

40. Wisesa, S., Yamamoto, Y., and Sakisaka, T. (2019) TMCC3 localizes at the

three-way junctions for the proper tubular network of the endoplasmic

reticulum. Biochem. J. 476, 3241–3260

41. Hoyer, M. J., Chitwood, P. J., Ebmeier, C. C., Striepen, J. F., Qi, R. Z., Old,

W. M., et al. (2018) A novel class of ER membrane proteins regulates ERassociated endosome fission. Cell 175, 254–265

42. Wang, Y. H., Chan, Y. T., Hung, T. H., Hung, J. T., Kuo, M. W., Wang, S.

H., et al. (2021) Transmembrane and coiled-coil domain family 3

(TMCC3) regulates breast cancer stem cell and AKT activation. Oncogene

40, 2858–2871

43. Lee, C., and Chen, L. B. (1988) Dynamic behavior of endoplasmic reticulum in living cells. Cell 54, 37–46

44. English, A. R., and Voeltz, G. K. (2013) Endoplasmic reticulum structure

and interconnections with other organelles. Cold Spring Harb. Perspect.

Biol. 5, a013227

45. Westrate, L. M., Lee, J. E., Prinz, W. A., and Voeltz, G. K. (2015) Form

follows function: © importance of endoplasmic reticulum shape. Annu.

Rev. Biochem. 84, 791–811

46. Sohn, W. J., Kim, J. Y., Kim, D., Park, J. A., Lee, Y., and Kwon, H. J. (2016)

Expression and characterization of transmembrane and coiled-coil

domain family 3. BMB Rep. 49, 629–634

47. Aitken, A. (2006) 14-3-3 proteins: a historic overview. Semin. Cancer Biol.

16, 162–172

48. Gardino, A. K., Smerdon, S. J., and Yaffe, M. B. (2006) Structural determinants of 14-3-3 binding specificities and regulation of subcellular

localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal

structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16, 173–182

49. Jones, D. H., Ley, S., and Aitken, A. (1995) Isoforms of 14-3-3 protein can

form homo- and heterodimers in vivo and in vitro: implications for

function as adapter proteins. FEBS Lett. 368, 55–58

50. Dougherty, M. K., and Morrison, D. K. (2004) Unlocking the code of 143-3. J. Cell Sci. 117, 1875–1884

51. Freeman, A. K., and Morrison, D. K. (2011) 14-3-3 proteins: diverse

functions in cell proliferation and cancer progression. Semin. Cell Dev.

Biol. 22, 681–687

52. Kleppe, R., Martinez, A., Døskeland, S. O., and Haavik, J. (2011) The 14-33 proteins in regulation of cellular metabolism. Semin. Cell Dev. Biol. 22,

713–719

Regulation of TMCC3 localization by 14-3-3γ binding

53. Pennington, K. L., Chan, T. Y., Torres, M. P., and Andersen, J. L. (2018)

The dynamic and stress-adaptive signaling hub of 14-3-3: emerging

mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 37, 5587–5604

54. Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H.,

et al. (1997) The structural basis for 14-3-3:phosphopeptide binding

specificity. Cell 91, 961–971

55. Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J.,

et al. (1999) Structural analysis of 14-3-3 phosphopeptide complexes

identifies a dual role for the nuclear export signal of 14-3-3 in ligand

binding. Mol. Cell 4, 153–166

56. Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., Willems, A., et al.

(2021) The BioGRID database: a comprehensive biomedical resource of

curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200

57. Madeira, F., Tinti, M., Murugesan, G., Berrett, E., Stafford, M., Toth, R.,

et al. (2015) 14-3-3-Pred: improved methods to predict 14-3-3-binding

phosphopeptides. Bioinformatics 31, 2276–2283

58. Burkhard, P., Stetefeld, J., and Strelkov, S. V. (2001) Coiled coils: a highly

versatile protein folding motif. Trends Cell Biol. 11, 82–88

59. Humphrey, S. J., Yang, G., Yang, P., Fazakerley, D. J., Stöckli, J., Yang, J. Y.,

et al. (2013) Dynamic adipocyte phosphoproteome reveals that Akt

directly regulates mTORC2. Cell Metab. 17, 1009–2100

60. Nellist, M., Goedbloed, M. A., de Winter, C., Verhaaf, B., Jankie, A.,

Reuser, A. J., et al. (2002) Identification and characterization of the

interaction between tuberin and 14-3-3zeta. J. Biol. Chem. 277,

39417–39424

61. Cai, S. L., Tee, A. R., Short, J. D., Bergeron, J. M., Kim, J., Shen, J., et al.

(2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation

and membrane partitioning. J. Cell Biol. 173, 279–289

62. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J., and Kim, D. H.

(2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate

PRAS40. Nat. Cell Biol. 9, 316–323

63. Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999)

Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3

protein. Nature 397, 172–175

64. Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and PiwnicaWorms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-33 protein binding by phosphorylation of Cdc25C on serine-216. Science

277, 1501–1505

65. Forrest, A., and Gabrielli, B. (2001) Cdc25B activity is regulated by 14-3-3.

Oncogene 20, 4393–4401

66. Johnson, C., Crowther, S., Stafford, M. J., Campbell, D. G., Toth, R., and

MacKintosh, C. (2010) Bioinformatic and experimental survey of 14-3-3binding sites. Biochem. J. 427, 69–78

J. Biol. Chem. (2023) 299(2) 102813

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る