リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons

Maruo, Tomohiko Mizutani, Kiyohito Miyata, Muneaki Kuriu, Toshihiko Sakakibara, Shotaro Takahashi, Hatena Kida, Daichi Maesaka, Kouki Sugaya, Tsukiko Sakane, Ayuko Sasaki, Takuya Takai, Yoshimi Mandai, Kenji 神戸大学

2023.04

概要

A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.

この論文で使われている画像

参考文献

1. Rollenhagen, A., Satzler, K., Rodriguez, E. P., Jonas, P., Frotscher,

M., and Lubke, J. H. (2007) Structural determinants of transmission

at large hippocampal mossy fiber synapses. J. Neurosci. 27,

10434–10444

2. Wilke, S. A., Antonios, J. K., Bushong, E. A., Badkoobehi, A., Malek, E.,

Hwang, M., et al. (2013) Deconstructing complexity: serial block-face

electron microscopic analysis of the hippocampal mossy fiber synapse.

J. Neurosci. 33, 507–522

J. Biol. Chem. (2023) 299(4) 103040

13

s-Afadin−MAGUIN interaction regulates synaptic functions

3. Amaral, D. G., and Dent, J. A. (1981) Development of the mossy fibers of

the dentate gyrus: I. A light and electron microscopic study of the mossy

fibers and their expansions. J. Comp. Neurol. 195, 51–86

4. Mandai, K., Nakanishi, H., Satoh, A., Obaishi, H., Wada, M., Nishioka, H.,

et al. (1997) Afadin: a novel actin filament-binding protein with one PDZ

domain localized at cadherin-based cell-to-cell adherens junction. J. Cell

Biol. 139, 517–528

5. Takai, Y., Ikeda, W., Ogita, H., and Rikitake, Y. (2008) The

immunoglobulin-like cell adhesion molecule nectin and its associated

protein afadin. Annu. Rev. Cell Dev. Biol. 24, 309–342

6. Nishioka, H., Mizoguchi, A., Nakanishi, H., Mandai, K., Takahashi, K.,

Kimura, K., et al. (2000) Localization of l-afadin at puncta adhaerentialike junctions between the mossy fiber terminals and the dendritic

trunks of pyramidal cells in the adult mouse hippocampus. J. Comp.

Neurol. 424, 297–306

7. Mizoguchi, A., Nakanishi, H., Kimura, K., Matsubara, K., Ozaki-Kuroda,

K., Katata, T., et al. (2002) Nectin: an adhesion molecule involved in

formation of synapses. J. Cell Biol. 156, 555–565

8. Maruo, T., Mandai, K., Miyata, M., Sakakibara, S., Wang, S., Sai, K., et al.

(2017) NGL-3-induced presynaptic differentiation of hippocampal neurons in an afadin-dependent, nectin-1-independent manner. Genes Cells

22, 742–755

9. Buchert, M., Schneider, S., Meskenaite, V., Adams, M. T., Canaani, E.,

Baechi, T., et al. (1999) The junction-associated protein AF-6 interacts

and clusters with specific Eph receptor tyrosine kinases at specialized sites

of cell-cell contact in the brain. J. Cell Biol. 144, 361–371

10. Xie, Z., Huganir, R. L., and Penzes, P. (2005) Activity-dependent dendritic

spine structural plasticity is regulated by small GTPase Rap1 and its target

AF-6. Neuron 48, 605–618

11. Sai, K., Wang, S., Kaito, A., Fujiwara, T., Maruo, T., Itoh, Y., et al. (2017)

Multiple roles of afadin in the ultrastructural morphogenesis of mouse

hippocampal mossy fiber synapses. J. Comp. Neurol. 525, 2719–2734

12. Geng, X., Maruo, T., Mandai, K., Supriyanto, I., Miyata, M., Sakakibara,

S., et al. (2017) Roles of afadin in functional differentiations of hippocampal mossy fiber synapse. Genes Cells 22, 715–722

13. Maruo, T., Sakakibara, S., Miyata, M., Itoh, Y., Kurita, S., Mandai, K., et al.

(2018) Involvement of l-afadin, but not s-afadin, in the formation of

puncta adherentia junctions of hippocampal synapses. Mol. Cell. Neurosci. 92, 40–49

14. Yao, I., Hata, Y., Ide, N., Hirao, K., Deguchi, M., Nishioka, H., et al. (1999)

MAGUIN, a novel neuronal membrane-associated guanylate kinaseinteracting protein. J. Biol. Chem. 274, 11889–11896

15. Therrien, M., Wong, A. M., and Rubin, G. M. (1998) CNK, a RAFbinding multidomain protein required for RAS signaling. Cell 95,

343–353

16. Yao, I., Ohtsuka, T., Kawabe, H., Matsuura, Y., Takai, Y., and Hata, Y.

(2000) Association of membrane-associated guanylate kinase-interacting

protein-1 with Raf-1. Biochem. Biophys. Res. Commun. 270, 538–542

17. Houge, G., Rasmussen, I. H., and Hovland, R. (2012) Loss-of-function

CNKSR2 mutation is a likely cause of non-syndromic X-linked intellectual disability. Mol. Syndromol. 2, 60–63

18. Vaags, A. K., Bowdin, S., Smith, M. L., Gilbert-Dussardier, B., BrockeHolmefjord, K. S., Sinopoli, K., et al. (2014) Absent CNKSR2 causes

seizures and intellectual, attention, and language deficits. Ann. Neurol. 76,

758–764

19. Higa, L. A., Wardley, J., Wardley, C., Singh, S., Foster, T., and Shen, J. J.

(2021) CNKSR2-related neurodevelopmental and epilepsy disorder: a

cohort of 13 new families and literature review indicating a predominance

of loss of function pathogenic variants. BMC Med. Genomics 14, 186

20. Kang, Q., Yang, L., Liao, H., Wu, L., Chen, B., Yang, S., et al. (2021)

CNKSR2 gene mutation leads to Houge type of X-linked syndromic

mental retardation: a case report and review of literature. Medicine

(Baltimore) 100, e26093

21. Kurita, S., Yamada, T., Rikitsu, E., Ikeda, W., and Takai, Y. (2013) Binding

between the junctional proteins afadin and PLEKHA7 and implication in

the formation of adherens junction in epithelial cells. J. Biol. Chem. 288,

29356–29368

14 J. Biol. Chem. (2023) 299(4) 103040

22. Zieger, H. L., Kunde, S. A., Rademacher, N., Schmerl, B., and Shoichet, S.

A. (2020) Disease-associated synaptic scaffold protein CNK2 modulates

PSD size and influences localisation of the regulatory kinase TNIK. Sci.

Rep. 10, 5709

23. Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., et al. (2000) Stargazin regulates synaptic

targeting of AMPA receptors by two distinct mechanisms. Nature

408, 936–943

24. Tao-Cheng, J. H., Crocker, V. T., Winters, C. A., Azzam, R., Chludzinski,

J., and Reese, T. S. (2011) Trafficking of AMPA receptors at plasma

membranes of hippocampal neurons. J. Neurosci. 31, 4834–4843

25. Erata, E., Gao, Y., Purkey, A. M., Soderblom, E. J., McNamara, J. O., and

Soderling, S. H. (2021) Cnksr2 loss in mice leads to increased neural

activity and behavioral phenotypes of epilepsy-aphasia syndrome. J.

Neurosci. 41, 9633–9649

26. Judson, M. C., Wallace, M. L., Sidorov, M. S., Burette, A. C., Gu, B., van

Woerden, G. M., et al. (2016) GABAergic neuron-specific loss of Ube3a

causes angelman syndrome-like EEG abnormalities and enhances seizure

susceptibility. Neuron 90, 56–69

27. Sheng, M., and Kim, E. (2011) The postsynaptic organization of synapses.

Cold Spring Harb. Perspect. Biol. 3, a005678

28. Hirao, K., Hata, Y., Ide, N., Takeuchi, M., Irie, M., Yao, I., et al. (1998)

A novel multiple PDZ domain-containing molecule interacting with Nmethyl-D-aspartate receptors and neuronal cell adhesion proteins. J. Biol.

Chem. 273, 21105–21110

29. Nishimura, W., Yao, I., Iida, J., Tanaka, N., and Hata, Y. (2002) Interaction

of synaptic scaffolding molecule and beta -catenin. J. Neurosci. 22,

757–765

30. Ide, N., Hata, Y., Deguchi, M., Hirao, K., Yao, I., and Takai, Y. (1999)

Interaction of S-SCAM with neural plakophilin-related Armadillorepeat protein/delta-catenin. Biochem. Biophys. Res. Commun. 256,

456–461

31. Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu,

A., et al. (2000) Identification of a novel beta-catenin-interacting protein.

Biochem. Biophys. Res. Commun. 273, 712–717

32. Honda, T., Sakisaka, T., Yamada, T., Kumazawa, N., Hoshino, T., Kajita,

M., et al. (2006) Involvement of nectins in the formation of puncta

adherentia junctions and the mossy fiber trajectory in the mouse hippocampus. Mol. Cell. Neurosci. 31, 315–325

33. Iida, J., Nishimura, W., Yao, I., and Hata, Y. (2002) Synaptic localization of membrane-associated guanylate kinase-interacting protein

mediated by the pleckstrin homology domain. Eur. J. Neurosci. 15,

1493–1498

34. Deng, F., Price, M. G., Davis, C. F., Mori, M., and Burgess, D. L. (2006)

Stargazin and other transmembrane AMPA receptor regulating proteins

interact with synaptic scaffolding protein MAGI-2 in brain. J. Neurosci.

26, 7875–7884

35. Lim, J., Ritt, D. A., Zhou, M., and Morrison, D. K. (2014) The CNK2

scaffold interacts with vilse and modulates Rac cycling during spine

morphogenesis in hippocampal neurons. Curr. Biol. 24, 786–792

36. Miyata, M., Rikitake, Y., Takahashi, M., Nagamatsu, Y., Yamauchi, Y.,

Ogita, H., et al. (2009) Regulation by afadin of cyclical activation and

inactivation of Rap1, Rac1, and RhoA small G proteins at leading edges of

moving NIH3T3 cells. J. Biol. Chem. 284, 24595–24609

37. Sweatt, J. D. (2001) The neuronal MAP kinase cascade: a biochemical

signal integration system subserving synaptic plasticity and memory. J.

Neurochem. 76, 1–10

38. Sala, C., and Segal, M. (2014) Dendritic spines: the locus of structural and

functional plasticity. Physiol. Rev. 94, 141–188

39. Damiano, J. A., Burgess, R., Kivity, S., Lerman-Sagie, T., Afawi, Z.,

Scheffer, I. E., et al. (2017) Frequency of CNKSR2 mutation in the Xlinked epilepsy-aphasia spectrum. Epilepsia 58, e40–e43

40. Schizophrenia Working Group of the Psychiatric Genomics Consortium

(2014) Biological insights from 108 schizophrenia-associated genetic loci.

Nature 511, 421–427

41. Katsel, P., Davis, K. L., and Haroutunian, V. (2005) Variations in myelin

and oligodendrocyte-related gene expression across multiple brain

s-Afadin−MAGUIN interaction regulates synaptic functions

42.

43.

44.

45.

46.

regions in schizophrenia: a gene ontology study. Schizophr. Res. 79,

157–173

Kadiyala, S. B., Papandrea, D., Herron, B. J., and Ferland, R. J. (2014)

Segregation of seizure traits in C57 black mouse substrains using the

repeated-flurothyl model. PLoS One 9, e90506

Majima, T., Ogita, H., Yamada, T., Amano, H., Togashi, H., Sakisaka, T.,

et al. (2009) Involvement of afadin in the formation and remodeling of

synapses in the hippocampus. Biochem. Biophys. Res. Commun. 385,

539–544

Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C.,

et al. (1999) Disruption of the glucocorticoid receptor gene in the nervous

system results in reduced anxiety. Nat. Genet. 23, 99–103

Skarnes, W. C., Rosen, B., West, A. P., Koutsourakis, M., Bushell, W.,

Iyer, V., et al. (2011) A conditional knockout resource for the genomewide study of mouse gene function. Nature 474, 337–342

Mishina, M., and Sakimura, K. (2007) Conditional gene targeting on the

pure C57BL/6 genetic background. Neurosci. Res. 58, 105–112

47. Toyoshima, D., Mandai, K., Maruo, T., Supriyanto, I., Togashi, H., Inoue,

T., et al. (2014) Afadin regulates puncta adherentia junction formation

and presynaptic differentiation in hippocampal neurons. PLoS One 9,

e89763

48. Okabe, S., Kim, H. D., Miwa, A., Kuriu, T., and Okado, H. (1999)

Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat. Neurosci. 2, 804–811

49. Kuriu, T., Inoue, A., Bito, H., Sobue, K., and Okabe, S. (2006) Differential

control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 26, 7693–7706

50. Kuriu, T., Yanagawa, Y., and Konishi, S. (2012) Activity-dependent coordinated mobility of hippocampal inhibitory synapses visualized with

presynaptic and postsynaptic tagged-molecular markers. Mol. Cell.

Neurosci. 49, 184–195

51. Okabe, S., Miwa, A., and Okado, H. (2001) Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci. 21,

6105–6114

J. Biol. Chem. (2023) 299(4) 103040

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る