リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Di-lysine motif-like sequences formed by deleting the C-terminal domain of aquaporin-4 prevent its trafficking to the plasma membrane (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Di-lysine motif-like sequences formed by deleting the C-terminal domain of aquaporin-4 prevent its trafficking to the plasma membrane (本文)

Chau, Simon H. 慶應義塾大学

2021.03.23

概要

Aquaporin-4 is a transmembrane water channel protein, the C-terminal domain of which is facing the cytosol. In the process of investigating the role of the C-terminal domain of aquaporin-4 with regard to intracellular trafficking, we observed that a derivative of aquaporin-4, in which the C-terminal 53 amino acids had been removed (Δ271-323), was localized to intracellular compartments, including the endoplas- mic reticulum, but was not expressed on the plasma membranes. This was deter- mined by immunofluorescence staining and labeling of the cells with monoclonal antibody specifically recognizing the extracellular domain of aquaporin-4, followed by confocal microscopy and flow cytometry. Deletion of additional amino acids in the C-terminal domain of aquaporin-4 led to its redistribution to the plasma mem- brane. This suggests that the effect of the 53-amino acid deletion on the subcellular localization of aquaporin-4 could be attributed to the formation of a signal at the C terminus that retained aquaporin-4 in intracellular compartments, rather than the loss of a signal required for plasma membrane targeting. Substitution of the lysine at posi- tion 268 with alanine could rescue the Δ271-323-associated retention in the cytosol, suggesting that the C-terminal sequence of the mutant served as a signal similar to a di-lysine motif.

この論文で使われている画像

参考文献

Abe, Y., Kita, Y., & Niikura, T. (2008). Mammalian Gup1, a homo- log of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS Journal, 275(2), 318–331. https://doi.org/10.1111/j.1742-4658.2007.06202.x

Benghezal, M., Wasteneys, G. O., & Jones, D. A. (2000). The C- terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. The Plant Cell, 12(7), 1179– 1201. https://doi.org/10.1105/tpc.12.7.1179

Bonifacino, J. S., & Traub, L. M. (2003). Signals for sorting of trans- membrane proteins to endosomes and lysosomes. Annual Review Biochemistry, 72, 395–447. https://doi.org/10.1146/annurev.bioch em.72.121801.161800

Frydenlund, D. S., Bhardwaj, A., Otsuka, T., Mylonakou, M. N., Yasumura, T., Davidson, K. G., & Amiry-Moghaddam, M. (2006). Temporary loss of perivascular aquaporin-4 in neocortex after tran- sient middle cerebral artery occlusion in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13532–13536. https://doi.org/10.1073/pnas.0605796103

Hamann, S., Kiilgaard, J. F., Litman, T., Alzarez-Leefmans, F. J., Winther, B. R., & Zeuthen, T. (2002). Measurement of cell volume changes by fluorescence self-quenching. Journal of Fluorescence, 12, 139–145. https://doi.org/10.1023/A:1016832027325

Hasegawa, H., Ma, T., Skach, W., Matthay, M. A., & Verkman, A. S. (1994). Molecular cloning of a mercurial-insensitive water chan- nel expressed in selected water-transporting tissues. Journal of Biological Chemistry, 269(8), 5497–5500. https://www.jbc.org/content/269/8/5497.long

Ho, J. D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W. E., Robbins, R. A., Stroud, R. M. (2009). Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7437–7442.

Huang, P., Takai, Y., Kusano-Arai, O., Ramadhanti, J., Iwanari, H., Miyauchi, T., & Abe, Y. (2016). The binding property of a mono- clonal antibody against the extracellular domains of aquaporin-4 di- rects aquaporin-4 toward endocytosis. Biochemistry and Biophysics Reports, 7, 77–83. https://doi.org/10.1016/j.bbrep.2016.05.017

Ishibashi, K. (2006). Aquaporin subfamily with unusual NPA boxes. Biochimica et Biophysica Acta - Biomembranes, 1758(8), 989–993. https://doi.org/10.1016/j.bbamem.2006.02.024

Ishibashi, K., Tanaka, Y., & Morishita, Y. (2014). The role of mamma- lian superaquaporins inside the cell. Biochimica et Biophysica Acta, 1840(5), 1507–1512. https://doi.org/10.1016/j.bbagen.2013.10.039

Itoh, T., Rai, T., Kuwahara, M., Ko, S. B., Uchida, S., Sasaki, S., & Ishibashi, K. (2005). Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochemical and Biophysical Research Communications, 330(3), 832–838. https://doi.org/10.1016/j.bbrc.2005.03.046

Jackson, L. P., Lewis, M., Kent, H. M., Edeling, M. A., Evans, P. R., Duden, R., & Owen, D. J. (2012). Molecular basis for recognition of dilysine trafficking motifs by COPI. Developmental Cell, 23(6), 1255–1262. https://doi.org/10.1016/j.devcel.2012.10.017

Jackson, M. R., Nilsson, T., & Peterson, P. A. (1990). Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. The EMBO Journal, 9(10), 3153–3162. https://doi.org/10.1002/j.1460-2075.1990.tb07513.x

Jung, J. S., Bhat, R. V., Preston, G. M., Guggino, W. B., Baraban, J. M., & Agre, P. (1994). Molecular characterization of an aqua- porin cDNA from brain: Candidate osmoreceptor and regulator of water balance. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 13052–13056. https://doi. org/10.1073/pnas.91.26.13052

Kiening, K. L., van Landeghem, F. K., Schreiber, S., Thomale, U. W., von Deimling, A., Unterberg, A. W., & Stover, J. F. (2002). Decreased hemispheric aquaporin-4 is linked to evolving brain edema follow- ing controlled cortical impact injury in rats. Neuroscience Letters, 324(2), 105–108. https://doi.org/10.1016/s0304-3940(02)00180-5

Kirscht, A., Sonntag, Y., Kjellbom, P., & Johanson, U. (2018). A struc- tural preview of aquaporin 8 via homology modeling of seven vertebrate isoforms. BMC Strtuctual Biology, 18, 2. https://doi. org/10.1186/s12900-018-0081-8

Laloux, T., Junqueira, B., Maistriaux, L. C., Ahmed, J., Jurkiewicz, A., & Chaumont, F. (2018). Plant and mammal aquapoirns: Same but different. International Journal of Molecular Science, 19, 521.

Lewis, M. J., & Pelham, H. R. (1990). A human homologue of the yeast HDEL receptor. Nature, 348(6297), 162–163. https://doi.org/10.1038/348162a0

Lu, M., Lee, M. D., Smith, B. L., Jung, J. S., Agre, P., Verdijk, M. A., & Deen, P. M. (1996). The human AQP4 gene: Definition of the locus encoding two water channel polypeptides in brain. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 10908–10912. https://doi.org/10.1073/pnas.93.20.10908

Luskey, K. L., & Stevens, B. (1985). Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. Journal of Biological Chemistry, 260(18), 10271–10277.

Madrid, R., Le Maout, S., Barrault, M. B., Janvier, K., Benichou, S., & Mérot, J. (2001). Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interac- tions with different clathrin-adaptor complexes. The EMBO Journal, 20(24), 7008–7021. https://doi.org/10.1093/emboj/20.24.7008

Michelsen, K., Yuan, H., & Schwappach, B. (2005). Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assem-bly of heteromultimeric membrane proteins. EMBO Reports, 6(8), 717–722. https://doi.org/10.1038/sj.embor.7400480

Miyazaki, K., Abe, Y., Iwanari, H., Suzuki, Y., Kikuchi, T., Ito, T., & Yasui, M. (2013). Establishment of monoclonal antibodies against the extracellular domain that block binding of NMO-IgG to AQP4. Journal of Neuroimmunology, 260(1–2), 107–116. https://doi.org/10.1016/j.jneuroim.2013.03.003

Monai, H., Wang, X., Yahagi, K., Lou, N., Mestre, H., Xu, Q., Hirase, H. (2019). Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 116(22), 11010–11019. https://doi.org/10.1073/pnas.1817347116

Morishita, Y., Matsuzaki, T., Hara-Chikuma, M., Andoo, A., Shimono, M., Matsuki, A., & Ishibashi, K. (2005). Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Molecular and Cellular Biology, 25(17), 7770–7779. https://doi.org/10.1128/mcb.25.17.7770-7779.2005

Morishita, Y., Sakube, Y., Sasaki, S., & Ishibashi, K. (2004). Molecular mechanisms and drug development in aquaporin water channel diseases: Aquaporin superfamily (Superaquaporins): Expansion of aquaporins restricted to multicellular organisms. Journal of Pharmacological Sciences, 96(3), 276–279. https://doi.org/10.1254/ jphs.FMJ04004X7

Nagelhus, E. A., & Ottersen, O. P. (2013). Physiological roles of aqua- porin-4 in brain. Physiological Reviews, 93(4), 1543–1562. https:// doi.org/10.1152/physrev.00011.2013

Neely, J. D., Amiry-Moghaddam, M., Ottersen, O. P., Froehner, S. C., Agre, P., & Adams, M. E. (2001). Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14108–14113. https://doi.org/10.1073/pnas.241508198

Nielsen, S., Nagelhus, E. A., Amiry-Moghaddam, M., Bourque, C., Agre, P., & Ottersen, O. P. (1997). Specialized membrane do- mains for water transport in glial cells: High-resolution immu- nogold cytochemistry of aquaporin-4 in rat brain. The Journal of Neuroscience, 17(1), 171–180. https://doi.org/10.1523/JNEUR OSCI.17-01-00171.1997

Nilsson, T., Jackson, M., & Peterson, P. A. (1989). Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell, 58(4), 707–718. https://doi. org/10.1016/0092-8674(89)90105-0

Rossi, A., Pisani, F., Nicchia, G. P., Svelto, M., & Frigeri, A. (2010). Evidences for a leaky scanning mechanism for the synthesis of the shorter M23 protein isoform of aquaporin-4: Implication in orthog- onal array formation and neuromyelitis optica antibody interaction. Journal of Biological Chemistry, 285(7), 4562–4569. https://doi. org/10.1074/jbc.m109.069245

Takata, K., Matsuzaki, T., & Tajika, Y. (2004). Aquaporins: Water channel proteins of the cell membrane. Progress in Histochemistry and Cytochenistry, 39, 1–83. https://doi.org/10.1016/j. proghi.2004.03.001

Teasdale, R. D., & Jackson, M. R. (1996). Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annual Review of Cell and Developmental Biology, 12, 27–54. https://doi.org/10.1146/annurev.cellbio.12.1.27

Terris, J., Ecelbarger, C. A., Marples, D., Knepper, M. A., & Nielsen, S. (1995). Distribution of aquaporin-4 water channel expression within rat kidney. American Journal of Physiology, 269(6 Pt 2), F775–785. https://doi.org/10.1152/ajprenal.1995.269.6.F775

Yasui, M., Hazama, A., Kwon, T.-H., Nielsen, S., Guggino, W. B., & Agre, P. (1999). Rapid gating and anion permeability of an in-tracellular aquaporin. Nature, 402(6758), 184–187. https://doi. org/10.1038/46045

Yasui, M., Kwon, T.-H., Knepper, M. A., Nielsen, S., & Agre, P. (1999). Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5808–5813. https://doi.org/10.1073/pnas.96.10.5808

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る