リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sodium silylsilanolate as a precursor of silylcopper species」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sodium silylsilanolate as a precursor of silylcopper species

Yamagishi, Hiroki Hitoshio, Kenshiro Shimokawa, Jun Yorimitsu, Hideki 京都大学 DOI:10.1039/d2sc00227b

2022.04.21

概要

Silylcoppers function as convenient and effective sources of silicon functional groups. Commonly used precursors for those species have been limited to certain symmetric disilanes and silylboranes. This fact renders the development of silylcopper precursors desirable so that more diverse silyl groups could be efficiently delivered. Here we extend the utility of sodium silylsilanolates as competent precursors of silylcoppers. A silanolate unit operates as an auxiliary to transfer a variety of silyl groups to the copper centre, which was demonstrated in the copper-catalysed hydrosilylation of internal alkynes, α, β-unsaturated ketones, and allenes. Our mechanistic studies through DFT calculation suggested that a copper silylsilanolate undergoes intramolecular oxidative addition of the Si–Si bond to the copper centre to generate a silylcopper, in contrast to the typical formal σ-bond metathesis mechanism for conventional disilanes or silylboranes and copper alkoxides. Accordingly, sodium silylsilanolate has been established as an expeditious precursor of a variety of silylcopper species.

この論文で使われている画像

参考文献

1 (a) Silicon Polymers, ed. A. M. Muzafarov, Springer,

Heidelberg, 2011; (b) Silicon-Containing Polymers: The

Science and Technology of Their Synthesis and Applications,

ed. R. G. Jones, W. Ando and J. Chojnowski, Kluwer

Academic: Dordrecht, 2000; (c) S. Yamaguchi and

K. Tamao, Chem. Lett., 2005, 34, 2–7; (d) D. Sun, Z. Ren,

M. R. Bryce and S. Yan, J. Mater. Chem. C, 2015, 3, 9496–

9508; (e) M. Shimizu, Chem. Rec., 2015, 15, 73–85.

2 For reviews about silicon-containing drugs, see: (a) R. Tacke

and S. D¨

orrich, Drug Design Based on the Carbon/Silicon

Switch Strategy. in Atypical Elements in Drug Design, ed. J.

Schwarz, Topics in Medicinal Chemistry, vol. 17, 2016, pp.

29–59; (b) G. A. Showell and J. S. Mills, Drug Discovery,

2003, 8, 551–556; (c) S. McN. Sieburth and C.-A. Chen, Eur.

J. Org. Chem., 2006, 311–322; (d) N. A. Meanwell, J. Med.

Chem., 2011, 54, 2529–2591; (e) A. K. Franz and

S. O. Wilson, J. Med. Chem., 2013, 56, 388–405; (f) S. Fujii

and Y. Hashimoto, Future Med. Chem., 2017, 9, 485–505; (g)

R. Ramesh and D. S. Reddy, J. Med. Chem., 2018, 61, 3779–

3798.

3 (a) Y. Tsuji and T. Fujihara, Chem. Rec., 2016, 16, 2294–2313;

(b) J. R. Wilkinson, C. E. Nuyen, T. S. Carpenter, S. R. Harruff

and R. Van Hoveln, ACS Catal., 2019, 9, 8961–8979; (c) W. Xue

and M. Oestreich, ACS Cent. Sci., 2020, 6, 1070–1081.

4 (a) For preparation of silyllithium and silylzinc, see: Science of

Synthesis, ed. I. Fleming, Thieme, Stuttgart, 2002. vol 4; (b)

D. J. Ager and I. Fleming, J. Chem. Soc., Chem. Commun.,

1978, 177–178; (c) D. J. Ager, I. Fleming and S. K. Patel, J.

Chem. Soc., 1981, 2520–2526; (d) D. J. Vyas and

M. Oestreich, Chem. Commun., 2010, 46, 568–570; (e)

A. Weickgennant and M. Oestreich, Chem.–Eur. J., 2010, 16,

402–412; (f) C. K. Hazra and M. Oestreich, Org. Lett., 2012,

14, 4010–4013; (g) Preparation of a storable solid silylzinc

has been reported: R. Chandrasekaran, F. T. Pulikkottil,

K. S. Elamaa and R. Rasappan, Chem. Sci., 2021, 12, 15719–

15726.

5 (a) H. Ito, T. Ishizuka, J. Tateiwa, M. Sonoda and A. Hosomi,

J. Am. Chem. Soc., 1998, 120, 11196–11197; (b) C. T. Clark,

J. F. Lake and K. A. Scheidt, J. Am. Chem. Soc., 2004, 126,

84–85; (c) L. Iannazzo and G. A. Molander, Eur. J. Org.

Chem., 2012, 4923–4926; (d) Y. Minami, K. Shimizu,

C. Tsuruoka, T. Komiyama and T. Hiyama, Chem. Lett.,

2014, 43, 201–203; (e) H. Ito, Y. Horita and M. Sawamura,

Adv. Synth. Catal., 2012, 354, 813–817.

6 B. J. McCarty, B. M. Thomas, M. Zeller and R. Van Hoveln,

Organometallics, 2018, 37, 2937–2940.

7 (a) K.-S. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2010, 132,

2898–2900; (b) D. J. Vyas and M. Oestreich, Angew. Chem., Int.

Chem. Sci., 2022, 13, 4334–4340 | 4339

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access Article. Published on 21 March 2022. Downloaded on 12/2/2022 4:16:22 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Chemical Science

10

11

12

13

14

Ed., 2010, 47, 8513–8515; (c) D. J. Vyas, R. Fr¨

ohlich and

M. Oestreich, Org. Lett., 2011, 13, 2094–2097; (d) A. Welle,

J. Petrignet, B. Tinant, J. Wouters and O. Riant, Chem.–Eur.

J., 2010, 16, 10980–10983; (e) I. Ibrahem, S. Santoro,

F. Himo and A. C´

ordova, Adv. Synth. Catal., 2011, 353, 245–

252; (f) M. Tobisu, H. Fujihara, K. Koh and N. Chatani, J.

Org. Chem., 2010, 75, 4841–4847; (g) P. Wang, X.-L. Yeo and

T. P. Loh, J. Am. Chem. Soc., 2011, 133, 1254–1256; (h)

K. Kubota and H. Ito, Catalytic Generation of Silicon

Nucleophiles. in Organosilicon Chemistry, ed. T. Hiyama

and M. Oestreich, Wiley-VCH, Weinheim, 2019, pp. 1–32.

(a) C. Kleeberg, M. S. Cheung, Z. Lin and T. B. Marder, J. Am.

Chem. Soc., 2011, 133, 19060–19063; (b) L.-J. Cheng and

N. P. Mankad, J. Am. Chem. Soc., 2020, 142, 80–84.

(a) M. Suginome, T. Matsuda and Y. Ito, Organometallics,

2000, 19, 4647–4649; (b) T. A. Boebel and J. F. Hartwig,

Organometallics, 2008, 27, 6013–6019; (c) R. Shishido,

M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota

and H. Ito, J. Am. Chem. Soc., 2020, 142, 14125–14133.

E. Yamamoto, R. Shishido, T. Seki and H. Ito,

Organometallics, 2017, 36, 3019–3022.

The stability of sodium trimethylsilyldimethylsilanolate

under aerial conditions was veried according to the

method reported by Ito et al.10 See ESI† for details.

(a) H. Yamagishi, H. Saito, J. Shimokawa and H. Yorimitsu,

ACS Catal., 2021, 11, 10095–10103; (b) K. Hitoshio,

H. Yamagishi, J. Shimokawa and H. Yorimitsu, Chem.

Commun., 2021, 57, 6867–6870.

(a) B. M. Trost and D. M. T. Chan, J. Am. Chem. Soc., 1982,

104, 3733–3735; (b) J. G. Smith, N. R. Quinn and

M. Viswanathan, Synth. Commun., 1983, 13, 1–5; (c)

J. E. Audia and J. A. Marshall, Synth. Commun., 1983, 13,

531–535; (d) I. Fleming and T. W. Newton, J. Chem. Soc.,

Perkin Trans., 1984, 1, 1805–1808; (e) S. Kamio,

T. Imagawa, M. Nakamoto, M. Oestreich and H. Yoshida,

Synthesis, 2021, 53, 4678–4681.

(a) G. Auer and M. Oestreich, Chem. Commun., 2006, 311–

313; (b) Q.-Q. Xuan, C.-L. Ren, L. Liu, D. Wang and C.-J. Li,

Org. Biomol. Chem., 2015, 13, 5871–5874.

4340 | Chem. Sci., 2022, 13, 4334–4340

View Article Online

Edge Article

15 (a) E. A. Brinkman, S. Berger and J. I. Brauman, J. Am. Chem.

Soc., 1994, 116, 8304–8310; (b) B. R¨

omer, G. G. Gatev,

M. Zhong and J. I. Brauman, J. Am. Chem. Soc., 1998, 120,

2919–2924.

16 (a) B. H. Lipshutz, J. A. Sclafani and T. Takanami, J. Am.

Chem. Soc., 1998, 120, 4021–4022; (b) M. Oestreich and

B. Weiner, Synlett, 2004, 2139–2142.

17 (a) I. Fleming and F. J. Pulido, J. Chem. Soc., Chem. Commun.,

1986, 1010–1011; (b) J. Rae, Y. C. Hu and D. J. Procter, Chem.–

Eur. J., 2014, 20, 13143–13145.

18 Attempted enantioselective hydrosilylation of 2s with several

chiral phosphine ligands afforded the hydrosilylated

products in moderate to good yields, albeit without any

noticeable enantioselectivity in all cases. See ESI† for details.

19 C. Kleeberg, E. Feldmann, E. Hartmann, D. J. Vyas and

M. Oestreich, Chem.–Eur. J., 2011, 17, 13538–13543.

20 D. J. Vyas, R. Fr¨

ohlich and M. Oestreich, Org. Lett., 2011, 13,

2094–2097.

21 (a) R. West and R. H. Baney, J. Am. Chem. Soc., 1959, 81,

6145–6148; (b) R. West, R. H. Baney and D. L. Powell, J.

Am. Chem. Soc., 1960, 82, 6269–6272; (c) T. Kagiya,

Y. Sumida and T. Tachi, Bull. Chem. Soc. Jpn., 1970, 43,

3716–3722.

22 (a) R. D. Pike, W. H. Starnes, Jr. and G. B. Carpenter, Acta

Crystallogr., 1999, 55, 162–165; (b) F.-F. Jian, K.-F. Wang,

H.-L. Xiao and Y.-B. Qiao, Acta Crystallogr., 2005, 61,

m1324–m1325.

23 The Gibbs free energy of INT-B3 is higher than that of TS-B1

as shown in Fig. 2C. As this reversal may seem contradictory,

electronic energy of INT-B3 is lower than that of TS-B1 on

potential energy surface. IRC calculations also conrmed

that TS-B1 connects to INT-B3.

24 DFT calculations by Maiti et al. have suggested that the

transfer of silyl groups onto palladium atoms proceeds via

oxidative addition of SiSi bond. A. Maji, S. Guin, S. Feng,

A. Dahiya, V. Singh, P. Liu and D. Maiti, Angew. Chem., Int.

Ed., 2017, 56, 14903–14907.

© 2022 The Author(s). Published by the Royal Society of Chemistry

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る