リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Giant Anomalous Hall Conductivity at the Pt/Cr₂O₃ Interface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Giant Anomalous Hall Conductivity at the Pt/Cr₂O₃ Interface

Moriyama, Takahiro 大阪大学

2020.03.20

概要

The interface between a magnetic material and a heavy metal that has a large spin-orbit interaction is at the root of various spin-related phenomena. In this paper, we address the peculiar spin-dependent transport at a Pt/Cr₂O₃ interface by exploring the origin of the nonlinear anomalous Hall effect (AHE) in Pt/Cr₂O₃ bilayers. X-ray magnetic circular dichroism (XMCD) measurements show no appreciable magnetic moment at the interface originating from Cr 3d and Pt 5d orbitals, which could be associated with the AHE response. A possible interfacial magnetic moment M at the Pt/Cr₂O₃ interface, assumed from the detection limit of the XMCD measurements, yields an anomalous Hall conductivity (σAHE) per unit net magnetic moment (M),-σAHE/M, of 0.57 V-1, which is extraordinary large compared with that for general magnetic materials. Together with first-principles calculations, the results suggest the possibility of an intrinsic AHE in the Pt/Cr₂O₃ interface that does not rely on the net magnetic moment.

この論文で使われている画像

参考文献

[1] C. L. Chien and C. R. Westgate, The Hall Effect and Its Applications (Plenum, New York, 1980).

[2] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[3] Z. Fang, et al., The anomalous Hall effect and mag- netic monopoles in momentum space, Science 302, 92 (2003).

[4] G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank, and M. R. Beasley, Structure, physical properties, and applications of SrRuO3 thin films, Rev. Mod. Phys. 84, 253 (2012).

[5] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anoma- lous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527, 212 (2015).

[6] H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall Effect Arising From Noncollinear Antiferromagnetism, Phys. Rev. Lett. 112, 017205 (2014).

[7] N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge, Phys. Rev. Appl. 5, 064009 (2016).

[8] S. Rüegg, G. Schütz, P. Fischer, R. Wienke, W. B. Zeper, and H. Ebert, Spin-dependent x-ray absorption in Co/Pt multilayers, J. Appl. Phys. 69, 5655 (1991).

[9] G. Schütz, S. Stähler, M. Knülle, P. Fischer, S. Parkin, and H. Ebert, Distribution of magnetic moments in Co/Pt and Co/Pt/Ir/Pt multilayers detected by magnetic x-ray absorption, J. Appl. Phys. 73, 6430 (1993).

[10] M. Suzuki, H. Muraoka, Y. Inaba, H. Miyagawa, N. Kawa- mura, T. Shimatsu, H. Maruyama, N. Ishimatsu, Y. Isohara, and Y. Sonobe, Depth profile of spin and orbital magnetic moments in a subnanometer Pt film on Co, Phys. Rev. B 72, 054430 (2005).

[11] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8, 152 (2013).

[12] I. M. Miron, G. Gaudin, S. Auffret, B. Rodmaq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nat. Mater. 9, 230 (2010).

[13] M. I. D’yakonov and V. I. Perel, Possibility of orienting electron spins with current, JETP Lett. 13, 467 (1971).

[14] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science 336, 555 (2012).

[15] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, P. Gross, G. E. W. Bauer, S. T. B. Goennen- wein, and E. Saitoh, Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect, Phys. Rev. Lett. 110, 206601 (2013).

[16] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goernnenwein, E. Saitoh, and G. E. W. Bauer, Theory of spin Hall magnetoresistance, Phys. Rev. B 87, 144411 (2013).

[17] Y. Ji, J. Miao, Z. Y. Ren, B. W. Dong, X. G. Xu, Y. Wu, and Y. Jiang, Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure, Appl. Phys. Lett. 110, 262401 (2017).

[18] T. Iino, T. Moriyama, H. Iwaki, H. Aono, Y. Shiratsuchi, and T. Ono, Resistive detection of the Néel temperature of Cr2O3 thin films, Appl. Phys. Lett. 114, 022402 (2019).

[19] Y. Ji, J. Miao, Y. M. Zhu, K. K. Meng, X. G. Xu, J. K. Chen, and Y. Jiang, Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region, Appl. Phys. Lett. 112, 232404 (2018).

[20] A. Stierle, Th. Koll, and H. Zabel, Structure and defects of epitaxial overlayers on Cr(110), Phys. Rev. B 58, 5062 (1998).

[21] S. Foner, High-field antiferromagnetic resonance in Cr2O3, Phys. Rev. 130, 183 (1963).

[22] H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, Scaling of Spin Hall Angle in 3d, 4d, and 5d Metals From Y3Fe5 O12 /Metal Spin Pumping, Phys. Rev. Lett. 112, 197201 (2014).

[23] X. Jia, K. Liu, K. Xia, and G. E. W. Bauer, Spin transfer torque on magnetic insulators, Europhys. Lett. 96, 17005 (2011).

[24] L. Ma, L. Lang, J. Kim, Z. Yuan, R. Wu, S. Zhou, and X. Qiu, Spin diffusion length and spin Hall angle in Pd1- xPtx/YIG heterostructures: Examination of spin relaxation mechanism, Phys. Rev.B 98, 224424 (2018).

[25] A. V. Kolobov, F. Wilheim, A. Rogalev, T. Shima, and J. Tominaga, Thermal decomposition of sputtered thin PtOx layers used in super-resolution optical disks, Appl. Phys. Lett. 86, 121909 (2005).

[26] P. Borisov, A. Hochstrat, X. Chen, W. Kleeemann, and C. Binek, Magnetoelectric Switching of Exchange Bias, Phys. Rev. Lett. 94, 117203 (2005).

[27] T. Ashida, M. Oida, N. Shimomura, T. Nozaki, T. Shi- bata, and M. Sahashi, Observation of magnetoelectric effect in Cr2O3/Pt/Co thin film system, Appl. Phys. Lett. 104, 152409 (2014).

[28] K. Toyoki, Y. Shiratsuchi, T. Nakamura, C. Mitsumata, S. Harimoto, Y. Takechi, T. Nishimura, H. Nomura, and R. Nakatani, Equilibrium surface magnetization of α- Cr2O3studied through interfacial chromium magnetization in Co/α-Cr2O3layered structures, Appl. Phys. Express 7, 114201 (2014).

[29] Y. Yamazaki, T. Kataoka, V. R. Singh, A. Fujimori, F.-H. Chang, D.-J. Huang, H.-J. Lin, C. T. Chen, K. Ishikawa, K. Zhang, and S. Kuroda, Observation of magnetoelectric effect in Cr2O3/Pt/Co thin film system, J. Phys.: Condens. Matter 23, 176002 (2011).

[30] Y. Shiratsuchi, W. Kuroda, T. V. A. Nguyen, Y. Kotani, K. Toyoki, T. Nakamura, M. Suzuki, K. Nakamura, and R. Nakatani, Simultaneous achievement of high perpendicular exchange bias and low coercivity by controlling ferromag- netic/antiferromagnetic interfacial magnetic anisotropy, J. Appl. Phys. 121, 073902 (2017).

[31] Y. Shiatsuchi, H. Noutomi, H. Oikawa, T. Nakamura, M. Suzuki, T. Fujita, K. Arakawa, Y. Takechi, H. Mori, T. Kinoshita, M. Yamamoto, and R. Nakatani, Detection and in Situ Switching of Unreversed Interfacial Antiferromag- netic Spins in a Perpendicular-Exchange-Biased System, Phys. Rev. Lett. 109, 077202 (2012).

[32] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, X- ray Circular Dichroism as a Probe of Orbital Magnetization, Phys. Rev. Lett. 68, 1943 (1992).

[33] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, X-ray Circular Dichroism and Local Magnetic Fields, Phys. Rev. Lett. 70, 694 (1993).

[34] E. Goering, X-ray magnetic circular dichroism sum rule correction for the light transition metals, Phil. Mag. 85, 2895 (2005).

[35] The full-potential linearized augmented plane wave method is adopted for the first-principles calculations [36]. The cal- culations are done with a local-density approximation using the correlation correction +U for the Cr atoms (U = 4.0 eV and J = 0.58 eV [37]). The spin-orbit coupling is treated by the second variational method. For the generation of the magnetic moment in the Pt layer, a magnetic Zeeman field H sZ is implemented in the Kohn-Sham Hamiltonian. See Ref. [36] for more details of the methodology.

[36] K. Nakamura, T. Ito, A. J. Freeman, L. Zhong, and J. Fernandez-de-Castro, Intra-atomic noncollinear magnetism and the magnetic structures of antiferromagnetic FeMn, Phys. Rev. B 67, 014405 (2003); K. Nakamura, K. Hatano, T. Akiyama, T. Ito, and A. J. Freeman, Lattice expansion, stability, and Mn solubility in substitutionally Mn-doped GaAs, Phys. Rev.B 75, 205205 (2007).

[37] S. Shi, A. L. Wysocki, and K. D. Belashchenko, Magnetism of chromia from first-principles calculations, Phys. Rev. B 79, 104404 (2009).

[38] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Intrinsic Spin Hall Effect in Platinum: First-Principles Cal- culations, Phys. Rev. Lett. 100, 096401 (2008).

[39] A. Rohrbach, J. Hafner, and G. Kresse, Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations, Phys. Rev. B 70, 125426 (2004).

[40] L. Fu, Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi2Te3, Phys. Rev. Lett. 103, 266801 (2009).

[41] Y. Kato and H. Ishizuka, Colossal Enhancement of Spin- Chirality-Related Hall Effect by Thermal Fluctuation, Phys. Rev. Appl. 12, 021001 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る