リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of long-term childhood exercise and detraining on lipid accumulation in metabolic-related organs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of long-term childhood exercise and detraining on lipid accumulation in metabolic-related organs

Nguyen Son Tien 広島大学

2022.09.20

概要

Childhood obesity is globally on the rise and carried over to adulthood. Obese children have a higher risk of developing metabolic disorders later in life. Interventions for obesity include diet, exercise, and medical treatments, and those are proven effective on preventing and treating. However especially in exercise, obese children tend to have trouble adhering to a continual exercise program. Therefore, discontinuation of exercise could induce a detraining effect, which may negatively impact children’s metabolic health. In obese adults, after cessation of exercise, lipid accumulations in the whole body appear to partially or completely attenuate the effectiveness of the previous exercise. Lipid accumulation during the detraining period occurs in the main lipid supply organs, such as the intra-abdominal white adipose tissue (WAT), brown adipose tissue (BAT), and liver. Moreover, lipid accumulation in organs increases insulin resistance, which is similar to a vicious cycle. However, information regarding lipid accumulation in children with obesity undergoing detraining is limited. Therefore, we conducted this study with the aim of evaluating the effect of early long-term regular exercise and detraining on the prevention of childhood obesity through fat accumulations in metabolic-related organs.

Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an obesity model characterized by hyperphagia due to the loss of cholecystokinin receptor-1 in the dorsomedial hypothalamus, leading to decreased satiety. The natural progression of obesity and obesity-related metabolic complications in OLETF rats reflects human childhood obesity, leading to metabolic health problems in adulthood. Therefore, in our study, four- week-old male OLETF and Long-Evans Tokushima Otsuka rats were employed as obese and non-obese control groups. OLETF rats were assigned to sedentary and exercise groups. The exercise group performed wheel running from 4 to 12 week-old (i.e, childhood period) and detraining from 12 to 20 week-old (i.e, transition period from childhood to adulthood).

At 12-week-old immediately after the exercise period, regular exercise completely inhibited hyperphagia, obesity, enlarged pancreatic islets, lipid accumulation and lobular inflammation in the liver, hypertrophied adipocytes in the WAT, and BAT whitening in OLETF rats. In addition, exercise attenuated the decrease in the ratio of muscle wet weight to body weight associated with obesity. Decreased food consumption was maintained during the detraining period, which inhibited obesity and diabetes at 20-week-old after the detraining period. Histologically, childhood exercise inhibited the enlargement of pancreatic islets after the detraining period. In addition, inhibition of lipid accumulation was completely maintained in the WAT and BAT after the detraining period. However, the effectiveness was only partially successful in lipid accumulation and inflammation in the liver. The ratio of muscle wet weight to body weight was maintained after detraining.

In conclusion, early long-term regular exercise effectively prevents obesity and diabetes in childhood, and its effectiveness can be tracked later in life. The present study suggests the importance of exercise during childhood and adolescence to inhibit hyperphagia-induced lipid accumulation in metabolic-related organs in adulthood despite exercise cessation.

小児肥満は世界的に増加しており、成人期にその影響が持ち越されています。肥満の子供は、後年に代謝障害を発症するリスクが高くなります。肥満への介入には、食事療法、運動、および医学的治療が含まれ、それらは予防および治療に効果をもたらすことが証明されています。しかし、特に運動では、肥満の子供が継続的な運動プログラムを順守するのに苦労する傾向があります。したがって、運動を中止すると、脱訓練効果として子供の代謝の健康面に悪影響をもたらします。肥満の成人では、運動をやめた後、身体に脂肪が部分的あるいは全体に蓄積すると、以前の運動効果が減弱してしまいます。脱訓練期間中の脂質蓄積は、腹腔内の白色脂肪組織(WAT)、褐色脂肪組織(BAT)、肝臓など主要な脂質供給器官で発生します。さらに、臓器に脂質が蓄積するとインスリン抵抗性が高まり、悪循環をもたらします。しかしながら、脱訓練による肥満の子供にみられる脂質蓄積についての情報は限られています。そのため、我々は、早期の長期定期運動と脱訓練の効果が、代謝関連臓器への脂肪蓄積による小児肥満の予防にもたらす影響を検証することを目的として研究を実施しました。

Otsuka Long-Evans Tokushima Fatty (OLETF)ラットは、背内側視床下部のコレシストキニン受容体-1欠損による満腹感低下によって過食症がもたらされる特徴を有する肥満モデル動物です。OLETFラットにおける肥満および肥満関連の代謝性合併症の自然進行は、ヒトの小児肥満を反映しており、成人期の代謝の健康面に問題となります。したがって、我々の研究では、開始時4週齢の雄OLETFおよびLong-Evans Tokushima Otsukaラットを肥満および非肥満の対照群としました。OLETFラットは、運動群と非運動群に分けました。運動グループは、4~12週齢( 小児期に相当) から輪車運動を行い、12〜20週齢( 成人期への移行期に相当) に脱訓練を設定しました。

運動期間直後の12週齢では、定期的な運動により、過食症、肥満、膵臓の肥大、肝臓の脂質蓄積と肝小葉の炎症、WATの肥大した脂肪細胞、OLETFラットのBATの白色化が完全に抑制されました。さらに、運動は、肥満に関連する体重に対する筋肉の湿重量比率の減少を弱めました。脱訓練期間中も摂餌量の減少が維持され、それにより脱訓練期間後の20週齢でも肥満と糖尿病が抑制されました。組織学的に、小児期の運動は、脱訓練期間後の膵臓拡大を抑制しました。さらに、脂質蓄積の抑制は、脱訓練期間後、WATおよびBATにおいて完全に維持されました。しかし、肝臓での脂質蓄積と炎症では、効果は部分的にみられました。体重に対する筋肉の湿重量比率は、脱訓練後も維持されました。

結論として、早期の長期定期運動は、小児期の肥満と糖尿病を効果的に予防し、その有効性はその後にも確認することができました。本研究は、成人期の代謝関連器官における過食症による脂質蓄積を阻害するために、たとえ運動をやめることになっても小児期および青年期における運動実施の重要性を示唆しています。

この論文で使われている画像

参考文献

1. United Nations Children’s Fund (UNICEF), World Health Organization IB for R and DWB. Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. Geneva: World Health Organization; 2021.

2. Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of Growth Trajecto- ries of Childhood Obesity into Adulthood. N Engl J Med. 2017; 377: 2145–2153. https://doi.org/10.1056/ NEJMoa1703860 PMID: 29171811

3. Kocova M, Sukarova-Angelovska E, Tanaskoska M, Palcevska-Kocevska S, Krstevska M. Metabolic Setup and Risks in Obese Children. J Med Biochem. 2014; 34: 31–37. https://doi.org/10.2478/jomb- 2014-0065 PMID: 28356821

4. Kumar S, Kelly AS. Review of Childhood Obesity. Mayo Clin Proc. 2017; 92: 251–265. https://doi.org/10.1016/j.mayocp.2016.09.017 PMID: 28065514

5. Atlantis E, Barnes EH, Singh MAF. Efficacy of exercise for treating overweight in children and adoles- cents: a systematic review. Int J Obes (Lond). 2006; 30: 1027–1040. https://doi.org/10.1038/sj.ijo. 0803286 PMID: 16534526

6. Zeller M, Kirk S, Claytor R, Khoury P, Grieme J, Santangelo M, et al. Predictors of attrition from a pediat- ric weight management program. J Pediatr. 2004; 144: 466–470. https://doi.org/10.1016/j.jpeds.2003.12.031 PMID: 15069394

7. Deforche B, Haerens L, de Bourdeaudhuij I. How to make overweight children exercise and follow the recommendations. Int J Pediatr Obes. 2011; 6: 35–41. https://doi.org/10.3109/17477166.2011.583660 PMID: 21905814

8. Weinsier RL, Nelson KM, Hensrud DD, Darnell BE, Hunter GR, Schutz Y. Metabolic predictors of obe- sity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. J Clin Invest. 1995; 95: 980–985. https://doi.org/ 10.1172/JCI117807 PMID: 7883999

9. Fatouros IG, Tournis S, Leontsini D, Jamurtas AZ, Sxina M, Thomakos P, et al. Leptin and Adiponectin Responses in Overweight Inactive Elderly following Resistance Training and Detraining Are Intensity Related. J Clin Endocrinol Metab. 2005; 90: 5970–5977. https://doi.org/10.1210/jc.2005-0261 PMID: 16091494

10. Garc´ıa-Hermoso A, Saavedra JM, Escalante Y, Dom´ınguez AM. Effects of a long-term physical exer- cise program with and without diet on obese boys after six-month detraining. World J Pediatr. 2014; 10: 38–45. https://doi.org/10.1007/s12519-014-0451-7 PMID: 24464662

11. Reinehr T, de Sousa G, Toschke AM, Andler W. Long-term follow-up of cardiovascular disease risk fac- tors in children after an obesity intervention. Am J Clin Nutr. 2006; 84: 490–496. https://doi.org/10.1093/ ajcn/84.3.490 PMID: 16960161

12. Moran TH. Unraveling the obesity of OLETF rats. Physiol Behav. 2008; 94: 71–78. https://doi.org/10. 1016/j.physbeh.2007.11.035 PMID: 18190934

13. Wang Y, Sun G, Sun J, Liu S, Wang J, Xu X, et al. Spontaneous Type 2 Diabetic Rodent Models. J Dia- betes Res. 2013; 2013: 1–8. https://doi.org/10.1155/2013/401723 PMID: 23671868

14. Folch J, Lees M SSG. A simple method for the isolation and purification of total lipides from animal tis- sues. J Biol Chem. 1957; 226: 497–509. PMID: 13428781

15. Crissey JM, Jenkins NT, Lansford KA, Thorne PK, Bayless DS, Vieira-Potter VJ, et al. Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insu- lin-resistant OLETF rats. Am J Physiol Regul Integr Comp Physiol. 2014; 306: R596–R606. https://doi. org/10.1152/ajpregu.00493.2013 PMID: 24523340

16. Shindo D, Matsuura T, Suzuki M. Effects of prepubertal-onset exercise on body weight changes up to middle age in rats. J App Physiol (1985). 2014; 116: 674–682. https://doi.org/10.1152/japplphysiol. 00405.2013 PMID: 24458753

17. Rector RS, Uptergrove GM, Morris EM, Borengasser SJ, Laughlin MH, Booth FW, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol. 2011; 300: G874–G883. https://doi.org/10.1152/ajpgi.00510.2010 PMID: 21350190

18. Yasari S, Paquette A, Charbonneau A, Gauthier M-S, Savard R, Lavoie J-M. Effects of ingesting a high- fat diet upon exercise-training cessation on fat accretion in the liver and adipose tissue of rats. Appl Phy- siol Nutr Metab. 2006; 31: 367–375. https://doi.org/10.1139/h06-032 PMID: 16900225

19. Bae JY, Woo J, Roh HT, Lee YH, Ko K, Kang S, et al. The effects of detraining and training on adipose tissue lipid droplet in obese mice after chronic high-fat diet. Lipids Health Dis. 2017; 16: 13. https://doi. org/10.1186/s12944-016-0398-x PMID: 28095854

20. Pouteau E, Turner S, Aprikian O, Hellerstein M, Moser M, Darimont C, et al. Time course and dynamics of adipose tissue development in obese and lean Zucker rat pups. Int J Obes (Lond). 2008; 32: 648– 657. https://doi.org/10.1038/sj.ijo.0803787 PMID: 18087263

21. Hirsch J, Han PW. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res. 1969; 10: 77–82. PMID: 5764119

22. Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A. Adipocyte size as a determinant of meta- bolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci. 2015; 52: 301–313. https://doi.org/ 10.3109/10408363.2015.1041582 PMID: 26292076

23. Bitar A, Fellmann N, Vernet J, Coudert J, Vermorel M. Variations and determinants of energy expendi- ture as measured by whole-body indirect calorimetry during puberty and adolescence. The American Journal of Clinical Nutrition. 1999; 69: 1209–1216. https://doi.org/10.1093/ajcn/69.6.1209 PMID: 10357741

24. Pontzer H, Yamada Y, Sagayama H, Ainslie PN, Andersen LF, Anderson LJ, et al. Daily energy expen- diture through the human life course. Science. 2021; 373: 808–812. https://doi.org/10.1126/science. abe5017 PMID: 34385400

25. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-Activated Brown Adipose Tissue in Healthy Men. N Engl J Med. 2009; 360: 1500–1508. https://doi.org/10.1056/NEJMoa0808718 PMID: 19357405

26. Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24˚C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009; 36: 602–606. https://doi.org/10.1007/s00259-008-0983-y PMID: 19037639

27. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. N Engl J Med. 2009; 360: 1509–1517. https://doi.org/10. 1056/NEJMoa0810780 PMID: 19357406

28. Lapa C, Arias-Loza P, Hayakawa N, Wakabayashi H, Werner RA, Chen X, et al. Whitening and Impaired Glucose Utilization of Brown Adipose Tissue in a Rat Model of Type 2 Diabetes Mellitus. Sci Rep. 2017; 7: 16795. https://doi.org/10.1038/s41598-017-17148-w PMID: 29196742

29. Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rare- faction mediates whitening of brown fat in obesity. J Clin Invest. 2014; 124: 2099–2112. https://doi.org/ 10.1172/JCI71643 PMID: 24713652

30. Forbes GB. Lean body mass and fat in obese children. Pediatrics. 1964; 34: 308–314. https://doi.org/ 10.1542/peds.34.3.308 PMID: 14211097

31. Khazem S, Itani L, Kreidieh D, Masri D El, Tannir H, Citarella R, et al. Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study. Int J Environ Res Public Health. 2018; 15: 2754. https://doi.org/10.3390/ijerph15122754 PMID: 30563167

32. Chondronikola M, Volpi E, Børsheim E, Porter C, Saraf MK, Annamalai P, et al. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metab. 2016; 23: 1200–1206. https://doi.org/10.1016/j.cmet.2016.04.029 PMID: 27238638

33. Matsumoto R, Tsunekawa K, Shoho Y, Yanagawa Y, Kotajima N, Matsumoto S, et al. Association between skeletal muscle mass and serum concentrations of lipoprotein lipase, GPIHBP1, and hepatic triglyceride lipase in young Japanese men. Lipids Health Dis. 2019; 18: 84. https://doi.org/10.1186/ s12944-019-1014-7 PMID: 30947712

34. Astrup A, Gøtzsche PC, van de Werken K, Ranneries C, Toubro S, Raben A, et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr. 1999; 69: 1117–1122. https://doi.org/ 10.1093/ajcn/69.6.1117 PMID: 10357728

35. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005; 115: 1343–1351. https://doi.org/10.1172/JCI23621 PMID: 15864352

36. Speretta G, Rosante M, Duarte F, Leite R, Lino A, Andre R, et al. The effects of exercise modalities on adiposity in obese rats. Clinics (Sao Paulo). 2012; 67: 1469–1477. https://doi.org/10.6061/clinics/2012(12)19 PMID: 23295603

37. Bradley RL, Jeon JY, Liu F-F, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adi- pose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2008; 295: E586–E594. https://doi.org/10.1152/ajpendo.00309.2007 PMID: 18577694

38. Kiuchi A, Arai Y, Katsuta S. Detraining Effects on Bone Mass in Young Male Rats. Int J Sports Med. 1998; 19: 245–249. https://doi.org/10.1055/s-2007-971912 PMID: 9657363

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る