リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of Dextrin Derivatives by Chemical or Enzymatic Esterification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of Dextrin Derivatives by Chemical or Enzymatic Esterification

LEE, HAK YONG 東京大学 DOI:10.15083/0002002292

2021.10.13

概要

Chapter 1. General Introduction
 There has been increasing demand for polysaccharides as a biomass polymer to reduce the carbon dioxide emission. Dextrin is a polysaccharide produced by the partial hydrolysis of starch or glycogen. Its structure consists of an α(1→4) linked main chain with α(1→4,6) linked branches (Scheme 1). A general characteristic of dextrin is that it dissolves well in polar solvents. This allows for its use in the adhesive, paint, cosmetic and biomedical industries. However, because neat dextrin does not exhibit thermoplasticity or hydrophobicity, thus its use in other applications is limited. The limited properties of dextrin can be modified by esterification.

Chapter 2. Research Background
 Esterification is one of the most popular modification reactions used to obtain thermoplastic and hydrophobic polysaccharides. This reaction can be catalyzed by chemical reagents or enzymes (Figure 2). Chemical esterification is suitable for the production of dextrin derivatives with a high degree of substitution (DS), because both primary and secondary hydroxyl groups are substituted in a non-selective reaction. Another route for the synthesis of dextrin derivatives is enzymatic esterification. This route is not only environmentally benign; it is also highly regioselective, allowing for the synthesis of dextrin esters with controlled structures and functionalities.

Chapter 3. Chemical Esterification; Fully Substituted Dextrin Esters
 A series of fully-acylated dextrin esters (DS=3) with varying side-chain lengths (C2-12) were synthesized by heterogeneous esterification using trifluoroacetic anhydride/carboxylic acid (Scheme 2).
 The influence of side-chain lengths on structure and properties of dextrin esters were investigated by structural, thermal, mechanical and hydrophobic analysis (Table 1). The thermal stability of dextrin was enhanced by esterification, presenting ca. 40-55 °C higher decomposition temperatures than that of neat-dextrin. The transition temperatures of melting and crystallization were not observed for all dextrin esters because they were amorphous polymers. The glass transition temperature (Tg) was not observed in dextrin but was observed in dextrin esters. As increasing side-chain length, Tgs of dextrin esters decreased ranged from 162.2 ℃ (C2) to 49.2 ℃ (C12). Colorless and transparent dextrin ester films were prepared to measure the film properties. Tensile strength of dextrin ester films tended to decrease with increasing side-chain lengths, whereas the elongation at break increased. And, dextrin ester films showed significantly increased hydrophobicity with a high contact angle (Figure 3).

Chapter 4. Enzymatic Esterification; Regioselectively Substituted Dextrin Esters
 Four lipase enzymes were investigated as catalysts in the synthesis of regioselectively mono-substituted dextrin esters from dextrin and vinyl acetate (Scheme 3). An immobilized lipase enzyme (Lipozyme TL IM) exhibited the highest activity. This enzyme showed regioselective substitution of the dextrin at the primary hydroxyl group (C6 position) under optimal conditions (60°C for 24 hours, using a 1:3 molar ratio of glucose unit/vinyl acetate and 2.5 U/mL enzyme dosage in an organic solvent) (Figure 4).
 To compare the reactivity of other vinyl esters, mono-substituted dextrin esters (degrees of substitution [DS] ≥ 1) with varying side-chain lengths (C2-12) were synthesized (Figure 4). With increasing side-chain length, the initial catalytic activity of the lipase enzyme decreased, resulting in lower DS values. However, the final DS values of the mono-substituted dextrin esters with longer side-chains were higher than those of the shorter chain analogues, because of an increase in affinity between the substrate and acyl donor.

Chapter 5. Lipase-catalyzed Polysaccharide Esters
 An important property of enzymes is that they exhibit substrate specificity under the conditions required for activity. To investigate the catalytic activity of lipase on polysaccharides, four kinds of lipase as catalysts were used for reaction between three kinds of polysaccharides, amylose (α(1→4) glucan), paramylon (β(1→3) glucan) or dextran (β(1→3) glucan)) with vinyl acetate, respectively (Scheme 4).
 Immobilized lipase enzyme (Lipozayme TL IM) showed the most efficient activity, and their activity was in the order of amylose, paramylon and dextrin (Figure 6 and 7). Lipase- catalyzed amylose acetate showed a high catalytic activity with a DS value of 1. Lipase- catalyzed paramylon acetate exhibited lower catalytic activity due to their high viscosity characteristics. Finally, lipase-catalyzed dextran acetate has lowest catalytic activity, indicating that the activity towards C2, C3, C4 positions is less than the C6 position.

Chapter 6. Summary and Conclusion
 In this research, it is confirmed that the functional properties of dextrin can be controlled esterification reaction. In particular, the chemical esterification of dextrin is expected to help resolve the limitations of commercialization of dextrin caused by their low thermoplastic and hydrophobicity. Otherwise, the results of enzymatic esterification demonstrate successful regioselective modification of dextrin using a lipase enzyme as a biocatalyst. Furthermore, lipases enzyme has the potential for catalytic function to other polysaccharides, amylose, paramylon and dextran. This research will contribute to the environmental friendly chemistry in terms of polysaccharide modification.

この論文で使われている画像

参考文献

Chapter 1

[1] Geyer R., Jambeck J. R., & Law K. L., Production, use, and fate of all plastics ever made. Science advances (2017) 3(7), e1700782.

[2] Andrady A. L., & Neal M. A., Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences (2009) 364(1526), 1977-1984.

[3] Kutz M., (2011) Applied plastics engineering handbook: processing and materials; William Andrew.

[4] Andrady A. L., & Neal M. A., Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences (2009) 364(1526), 1977-1984.

[5] Thompson R. C., Moore C. J., Vom Saal F. S., & Swan S. H., Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society of London B: Biological Sciences (2009). 364(1526) 2153-2166.

[6] Sudesh K., & Iwata T., Sustainability of biobased and biodegradable plastics. CLEAN–Soil, Air, Water, (2008) 36(5‐6), 433-442.

[7] Iwata T., Biodegradable and bio‐based polymers: Future prospects of eco‐friendly plastics. Angew Chem Int Ed (2015) 54, 3210-3215

[8] You Y. S., Oh Y. S., Hong S. H., & Choi S. W., International Trends in Development, Commercialization and Market of Bio-Plastics. Clean Technology (2015) 21(3), 141-152.

[9] Arikan E. B., & Ozsoy H. D., A review: investigation of bioplastics. J. Civ. Eng. Arch (2015) 9, 188-192.

[10] Aminabhavi T. M., Balundgi R. H., & Cassidy P. E., A review on biodegradable plastics. Polymer-Plastics Technology and Engineering (1990) 29(3), 235-262.

[11] Pathak S., Sneha C. L. R., & Mathew B. B., Bioplastics: Its timeline based scenario & challenges. Journal of Polymer and Biopolymer Physics Chemistry (2014) 2(4), 84-90.

[12] Reddy M. M., Vivekanandhan S., Misra M., Bhatia S. K., & Mohanty A. K., Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in polymer Science (2013) 38(10-11), 1653-1689.

Chapter 2

[1] Dumitriu S., (2004) Polysaccharides: structural diversity and functional versatility; CRC press.

[2] Heinze T., (2005) Polysaccharide I (Structure, Characterization and Use); Springer.

[3] Klemm D., (2005) Polysaccharide II; Springer.

[4] Cazon P., Velazquez G., Ramírez J. A., & Vázquez M., Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids (2017) 68, 136-148.

[5] Heinze T., & Koschella A., (2005) Carboxymethyl ethers of cellulose and starch–a review. In Macromolecular Symposia (Vol. 223, No. 1, pp. 13-40); Weinheim: WILEY‐VCH Verlag.

[6] Barsett H., Ebringerová A., Harding S. E., Heinze T., Hromádková Z., Muzzarelli C., ... & ElSEOUD O. A., (2005) Polysaccharides I: Structure, characterisation and use (Vol. 186); Springer Science & Business Media.

[7] EDinformatics:http://www.edinformatics.com/math_science

[8] Rao V. S. R., Qasba P. K., Balaji P. V., & Chandrasekara R., (1998) Conformation of Carbohydrates; Handwood Academic Publishers.

[9] Biological molecules, Carbohydrates; http://mrshum.com/pre-med/organic- chemistry/biological-molecules/

[10] Voet D., Voet G. J., (2008) Biochemistry 4th edition; John Wiley & Sons INC.

[11] Van der Maarel, J. R., (2007) Introduction to Biopolymer Physics; World Scientific Publishing Company.

[12] Kaplan D. L., (1998) Introduction to biopolymers from renewable resources. In Biopolymers from renewable resources (pp. 1-29); Springer.

[13] Sjostrom, E., Wood Chemistry., (1993) Fundamentals and Applications. Second edition ed.; San Diego: Academic press.

[14] Klemn D., Heublein B., Fink H.-P., & Bohn A., Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. (2005) 44, 3358-3393.

[15] Pérez S., & Mackie W., (2009) Structure and morphology of cellulose; Wayback Machine.

[16] Edgar K. J., Buchanan C. M., Debenham J. S., Rundquist P. A., Seiler B. D., Shelton M. C., et al., Advances in cellulose ester performance and application. Progress in Polymer Science. (2001) 26, 1605-88.

[17] Fisher J. F., (1959) Cellulose Derivatives. In: Honeyman J, editor. Recent advances in the chemistry of cellulose and starch (p 188-212); Interscience Publishers, Inc.

[18] Skjåk-Bræ k G., Anthonsen T., & Sandford P., (1989) Chitin and Chitosan; London: Elsevier applied science.

[19] Kumar M. N. R., A review of chitin and chitosan applications. Reactive and functional polymers (2000) 46(1), 1-27.

[20] Dutta P. K., Dutta J., & Tripathi V. S., Chitin and chitosan: Chemistry, properties and applications, Journal of Scientific and Industrial Research (2004) 63(01), 20-31

[21] Islam S., Bhuiyan M. R., & Islam M. N., Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment (2017) 25(3), 854-866.

[22] Rinaudo M., Chitin and chitosan: properties and applications. Progress in polymer science (2006) 31(7), 603-632.

[23] Elieh-Ali-Komi D., & Hamblin M. R., Chitin and chitosan: production and application of versatile biomedical nanomaterials. International journal of advanced research (2016) 4(3), 411.

[24] Brown W. H. & Poon T., (2005) Introduction to organic chemistry (3rd ed.); Wiley.

[25] http://www.lsbu.ac.uk/water/hysta.html

[26] http://www.gmocompass.org/eng/glossary/104.amylose_amylopectin_starch.html

[27] Green M. M., Blankenhorn G., & Hart H., Which starch fraction is water-soluble, amylose or amylopectin. Journal of Chemical Education (1975) 52(11), 729.

[28] Zeeman S. C., Kossmann J., & Smith A. M., Starch: its metabolism, evolution, and biotechnological modification in plants. Annual review of plant biology (2010) 61, 209-234.

[29] Biology Dictionary; https://biologydictionary.net/glycogen/,

[30] Eicke S., Seung D., Egli B., Devers E.A., & Streb S., Increasing the carbohydrate storage capacity of plants by engineering a glycogen-like polymer pool in the cytosol, Metabolic Engineering (2017) 40, 23-32.

[31] Berg J. M., Tymoczko J. L., & Stryer L., (2012) Biochemistry (7th, International ed.); W. H. Freeman.

[32] Godswill A. C., Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol., International Journal of Advanced Academic Research (2017) 3, 31-66.

[33] Tester R. F. & Qi X., β-limit dextrin–Properties and applications, Food hydrocolloids (2011) 25(8), 1899-1903.

[34] Carvalho J., Gonçalves C., Gil A. M., & Gama, F. M., Production and characterization of a new dextrin based hydrogel. Eur. Polym. J. (2007) 43(7), 3050- 3059.

[35] Das D., & Pal S., Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv. (2015) 5(32), 25014-25050.

[36] Das D., Patra P., Ghosh P., Rameshbabu A. P., Dhara S., & Pal S., Dextrin and poly (lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem (2016) 7, 2965-2975.

[37] Gonçalves C. & Gama F. M., Characterization of the self-assembly process of hydrophobically modified dextrin. Eur. Polym. J. (2008) 44(11), 3529-3534.

[38] Zare E. N., Lakouraj M. M., & Mohseni M., Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met (2014) 187, 9-16.

[39] Heinze, T. (2006) Esterification of polysaccharides.; Springer

[40] McNaught A. D., & McNaught A. D., (1997) Compendium of chemical terminology (Vol. 1669); Blackwell Science.

[41] Ioan C. E., Aberle T., & Burchard W., Structure properties of dextran. 2. Dilute solution. Macromolecules (2000) 33(15), 5730-5739.

[42] Heinze T., Liebert T., Heublein B., & Hornig S., (2006) Functional polymers based on dextran. In Polysaccharides Ii (pp. 199-291); Springer.

[43] Vandamme E. J., De Baets S., & Steinbuchel. A., (2002) Biopolymers, Polysaccharide Ⅰ (pp. 299-322); Wiley-VCH

[44] Okuyama K, Otsubo A, Fukuzawa Y, Ozawa M, Harada T, & Kasai N., Single- Helical Structure of Native Curdlan and its Aggregation State. Journal of Carbohydrate Chemistry (1991) 10, 645-56.

[45] Chuah C. T., Sarko A., Deslandes Y., & Marchessault R. H., Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates. Macromolecules (1983) 16(8), 1375-1382.

[46] Marchessault R. H., & Deslandes Y., Fine structure of (1→ 3)-β-D-glucans: curdlan and paramylon. Carbohydrate Research (1979) 75, 231-242.

[47] Cumpstey I., (2013) Chemical modification of polysaccharides. ISRN Org Chem, 2013:417672

[48] Li S., Xiong Q., Lai X., Li X., Wan M., Zhang J., & Zhang D., Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety (2016) 15(2), 237-250.

[49] Chatterjee C., Pong F., & Sen A., Chemical conversion pathways for carbohydrates. Green Chem (2015) 17(1), 40-71.

[50] Aburto J., Alric I., Thiebaud S., Borredon E., Bikiaris D., Prinos J., & Panayiotou C., Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci (1999) 74, 1440-1451.

[51] Winkler H., Vorwerg W., & Rihm R., Thermal and mechanical properties of fatty acid starch esters. Carbohydr Polym (2014) 102, 941-949.

[52] Crépy L., Miri V., Joly N., Martin P., & Lefebvre J. M., Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr Polym (2011) 83, 1812-1820.

[53] Skołucka-Szary K., Ramięga A., Piaskowska W., Janicki B., Grala M., Rieske P., Bartczak Z., & Piaskowski S., Synthesis and physicochemical characterization of chitin dihexanoate—A new biocompatible chitin derivative—In comparison to chitin dibutyrate. Mater Sci. Eng. C. (2016) 60, 489-502.

[54] Vanmarcke A., Leroy L., Stoclet G., Duchatel-Crépy L., Lefebvre J. M., Joly N., Gaucher V., Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydr Polym. (2017) 164, 249-257.

[55] Marubayashi H., Yukinaka K., Enomoto-Rogers Y., Takemura A., & Iwata T., Curdlan ester derivatives: Synthesis, structure, and properties. Carbohydr Polym. (2014) 103, 427-433.

[56] Crépy L., Chaveriat L., Banoub J., Martin P., & Joly N., Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem (2009) 2, 165-170.

[57] Chatterjee C., Pong F., & Sen A., Chemical conversion pathways for carbohydrates. Green Chem. (2015) 17(1), 40-71.

[58] Hafrén J., Zou W., & Córdova A., Heterogeneous organoclick derivatization of polysaccharides. Macromol Rapid Commun (2006) 27, 1362-1366.

[59] Karaki, N., Aljawish, A., Humeau, C., Muniglia, L., & Jasniewski, J., Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. (2016) 90, 1-18.

[60] van den Broek, L. A., & Boeriu, C. G., Enzymatic synthesis of oligo-and polysaccharide fatty acid esters. Carbohydr. Polym. (2013) 93(1), 65-72.

[61] Klibanov A. M., Improving enzymes by using them in organic solvents. nature (2001) 409(6817), 241-246.

[62] Kumar A., Dhar K., Kanwar S. S., & Arora P. K., Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online (2016) 18(1), 2-11

[63] Chien C. Y., Enomoto-Rogers Y., Takemura A., & Iwata T., Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydr Polym (2017) 155, 440-447.

[64] Junistia L., Sugih A. K., Manurung R., Picchioni F., Janssen L. P., & Heeres H. J., Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch‐Stärke (2008) 60(12), 667-675.

[65] Horchani H., Chaâbouni M., Gargouri Y., & Sayari A., Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohydr. Polym. (2010) 79(2), 466-474.

[66] Adak S., & Banerjee R., A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant. Carbohydr. Polym. (2016) 150, 359-368.

Chapter 3

[1] Lin L. H., Lai Y. C., Chen K. M., & Li C. S., Preparation and surface activities of modified soy protein–dextrin surfactants. J Surfactants Deterg (2016) 19, 19-28.

[2] Das D., Patra P., Ghosh P., Rameshbabu A. P., Dhara S., & Pal S., Dextrin and poly (lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem (2016) 7, 2965-2975.

[3] Cumpstey I., Chemical modification of polysaccharides. ISRN Org Chem, (2013) 2013:417672

[4] Glasser W. G., McCartney B. K., Samaranayake G., Cellulose derivatives with low degree of substitution; 3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechnol Progr (1994) 10, 214-219.

[5] Crépy L., Miri V., Joly N., Martin P., & Lefebvre J. M., Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr Polym (2011) 83, 1812-1820.

[6] Vanmarcke A., Leroy L., Stoclet G., Duchatel-Crépy L., Lefebvre J. M., Joly N., & Gaucher V., Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydr Polym (2017) 164, 249-257.

[7] Ikai T., Yun C., Kojima Y., Suzuki D., Maeda K., & Kanoh S., Development of amylose-and β-cyclodextrin-based chiral fluorescent sensors bearing terthienyl pendants. Molecules. (2016) Doi:10.3390/molecules21111518

[8] Skołucka-Szary K., Ramięga A., Piaskowska W., Janicki B., Grala M., Rieske P., Bartczak Z., & Piaskowski S., Synthesis and physicochemical characterization of chitin dihexanoate—A new biocompatible chitin derivative—In comparison to chitin dibutyrate. Mater Sci Eng C (2016) 60, 489-502.

[9] Marubayashi H., Yukinaka K., Enomoto-Rogers Y., Takemura A., & Iwata T., Curdlan ester derivatives: Synthesis, structure, and properties. Carbohydr Polym (2014) 103, 427-433.

[10] Chien C. Y., Enomoto-Rogers Y., Takemura A., & Iwata T., Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydr Polym (2017) 155, 440-447.

[11] Yang B. Y., & Montgomery R., Acylation of starch using trifluoroacetic anhydride promoter. Starch‐Stärke (2006) 58, 520-526.

[12] Danjo T., Enomoto-Rogers Y., Takemura A., & Iwata T., Syntheses and properties of glucomannan acetate butyrate mixed esters. Polym Degrad Stab (2014) 109, 373- 378.

[13] Enomoto-Rogers Y., Iio N., Takemura A., & Iwata T., Synthesis and characterization of pullulan alkyl esters. Eur Polym J (2015) 66, 470-477.

[14] Fundador N. G. V., Enomoto-Rogers Y., Takemura A., & Iwata T., Syntheses and characterization of xylan esters. Polymer (2012) 53, 3885-3893.

[15] Ponder G. R., Richards G. N., & Stevenson T. T., Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans. J Anal Appl Pyrolysis (1992) 22, 217-229.

[16] Ponder G. R., & Richards G. N., A review of some recent studies on mechanisms of pyrolysis of polysaccharides. Biomass Bioenergy (1994) 7, 1-24.

[17] Aburto J., Alric I., Thiebaud S., Borredon E., Bikiaris D., Prinos J., & Panayiotou C., Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci (1999) 74, 1440-1451.

[18] Cunha A. G., & Gandini A., Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose (2010) 17, 875-889.

[19] Winkler H., Vorwerg W., & Rihm R., Thermal and mechanical properties of fatty acid starch esters. Carbohydr Polym (2014) 102, 941-949.

[20] Lu X., Luo Z., Yu S., & Fu X., Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids. J Agric Food Chem (2012) 60, 9273-9279.

[21] Crépy L., Chaveriat L., Banoub J., Martin P., & Joly N., Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem (2009) 2, 165-170.

Chapter 4

[1] Godswill A. C., Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. International Journal of Advanced Academic Research (2017) 3, 31-66.

[2] Das D., & Pal S., Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances (2015) 5(32), 25014-25050

[3] Cumpstey I. Chemical modification of polysaccharides. ISRN Org. Chem. (2013).

[4] Karaki N., Aljawish A., Humeau C., Muniglia L., & Jasniewski J., Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. (2016) 90, 1-18.

[5] van den Broek L. A., & Boeriu C. G., Enzymatic synthesis of oligo-and polysaccharide fatty acid esters. Carbohydr. Polym. (2013) 93(1), 65-72.

[6] Kumar A., Dhar K., Kanwar S. S., & Arora P. K., Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online (2016) 18(1), 2-11

[7] Junistia L., Sugih A. K., Manurung R., Picchioni F., Janssen L. P., & Heeres H. J., Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch‐Stärke (2008) 60(12), 667-675.

[8] Horchani H., Chaâbouni M., Gargouri Y., & Sayari A., Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohydr. Polym. (2010) 79(2), 466-474.

[9] Adak S., & Banerjee R., A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant. Carbohydr. Polym. (2016) 150, 359-368.

[10] Chakraborty S., Sahoo B., Teraoka I., Miller L. M., & Gross R. A., Enzyme- catalyzed regioselective modification of starch nanoparticles. Macromolecules (2005) 38(1), 61-68.

[11] DiCosimo R., McAuliffe J., Poulose A. J., & Bohlmann G., Industrial use of immobilized enzymes. Chem. Soc. Rev. (2013) 42(15), 6437-6474.

[12] Ge J., Lu D., Wang J., & Liu Z., Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules (2009) 10(6), 1612-1618.

[13] Pedersen N. R., Kristensen J. B., Bauw G., Ravoo B. J., Darcy R., Larsen K. L., & Pedersen L. H., Thermolysin catalyses the synthesis of cyclodextrin esters in DMSO. Tetrahedron: Asymmetry (2005) 16(3), 615-622.

[14] Satoh T., Imai T., Ishihara H., Maeda T., Kitajyo Y., Sakai Y., & Kakuchi T., Synthesis, branched structure, and solution property of hyperbranched D-glucan and D-galactan. Macromolecules (2005) 38(10), 4202-4210.

[15] Ponder G. R., & Richards G. N., A review of some recent studies on mechanisms of pyrolysis of polysaccharides. Biomass Bioenergy (1994) 7(1-6), 1-24.

[16] Ponder G. R., Richards G. N., & Stevenson T. T., Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans. J. Anal. Appl. Pyrolysis (1992) 22(3), 217-229.

Chapter 5

[1] Karaki N., Aljawish A., Humeau C., Muniglia L., & Jasniewski J., Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. (2016) 90, 1-18.

[2] van den Broek L. A., & Boeriu C. G., Enzymatic synthesis of oligo-and polysaccharide fatty acid esters. Carbohydr. Polym. (2013) 93(1), 65-72.

[3] Ioan C. E., Aberle T., & Burchard W., Structure properties of dextran. 2. Dilute solution. Macromolecules (2000) 33(15), 5730-5739.

[4] Klibanov A. M., Improving enzymes by using them in organic solvents. nature (2001) 409(6817), 241-246.

[5] Kumar A., Dhar K., Kanwar S. S., & Arora P. K., Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online (2016) 18(1), 2-11

[6] Okuyama K., Otsubo A., Fukuzawa Y., Ozawa M., Harada T., Kasai N., Single- Helical Structure of Native Curdlan and its Aggregation State. Journal of Carbohydrate Chemistry (1991) 10, 645-56.

[7] Marchessault, R. H., & Deslandes, Y., Fine structure of (1→ 3)-β-D-glucans: curdlan and paramylon. Carbohydrate Research (1979) 75, 231-242.

参考文献をもっと見る