リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phonon-assisted proton tunneling in the hydrogen-bonded dimeric selenates of Cs3H(SeO4)2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phonon-assisted proton tunneling in the hydrogen-bonded dimeric selenates of Cs3H(SeO4)2

Hiroshi Matsui Kazuki Shimatani Yuka Ikemoto Takahiko Sasaki Yasumitsu Matsuo 東北大学 DOI:10.1063/1.5145108

2020.04.21

概要

In phases III and IV of Cs3H(SeO4)2, the vibrational state and intrabond transfer of the proton in the dimeric selenates are systematically studied with a wide range of absorbance spectra, a spin–lattice relaxation rate of 1H-NMR (T −1 1 ), and DFT calculations. The OH stretching vibrations have extremely broad absorption at around 2350 (B band) and 3050 cm−1 (A band), which originate from the 0–1 and 0–2 transitions in the asymmetric double minimum potential, respectively. The anharmonic-coupling calculation makes clear that the A band couples not only to the libration but also to the OH bending band. The vibrational state (nano-second order) is observed as the response of the proton basically localized in either of the two equivalent sites. The intrabond transfer between those sites (pico-second order) yields the protonic fluctuation reflected in T −1 1 . Together with the anomalous absorption [νp2 phonon, libration, tetrahedral deformation (δ440), and 610-cm−1 band], we have demonstrated that the intrabond transfer above 70 K is dominated by the thermal hopping that is collectively excited at 610 cm−1 and the phonon-assisted proton tunneling (PAPT) relevant to the tetrahedral deformation [PAPT(def)]. Below 70 K, T −1 1 is largely enhanced toward the antiferroelectric ordering and the distinct splitting emerges in the libration, which dynamically modulates the O(2)–O′ (2) distance of the dimer. The PAPT(lib) associated with the libration is confirmed to be a driving force of the AF ordering.

参考文献

1 P. Colomban, Proton Conductors (Cambridge University, Cambridge, 1992).

2K.-D. Kreuer, Chem. Mater. 8, 610 (1996).

3H. Sirringhaus, Adv. Mater. 21, 3859 (2009).

4T. Norby, Nature 410, 877 (2001).

5Y. Marechal, The Hydrogen Bond and the Water Molecule (Elsevier, Amsterdam, 2007).

6G. Gilli and P. Gilli, The Nature of the Hydrogen Bond (Oxford University, Oxford, 2009).

7K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).

8Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, and H. Kataura, Nat. Mater. 6, 135 (2007).

9H. Matsui, Y. Ohhta, C. Iida, M. Horii, and M. Tadokoro, J. Phys. Soc. Jpn. 79, 103601 (2010).

10H. Matsui and M. Tadokoro, J. Chem. Phys. 137, 144503 (2012).

11H. Matsui, Y. Suzuki, H. Fukumochi, and M. Tadokoro, J. Phys. Soc. Jpn. 83, 054708 (2014).

12H. Matsui, T. Sasaki, and M. Tadokoro, J. Phys. Chem. C 123, 20413 (2019).

13Y. Matsuo, H. Ikeda, T. Kawabata, J. Hatori, and H. Oyama, Mat. Sci. Appl. 08, 747 (2017).

14M. I. Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, and S. Bauer, Adv. Funct. Mater. 20, 4069 (2010).

15C. Zhong, Y. Deng, A. F. Roudsari, A. Kapetanovic, M. P. Anantram, and M. Rolandi, Nat. Commun. 2, 476 (2011).

16T. Miyake, E. E. Josberger, S. Keene, Y. Deng, and M. Rolandi, APL Mater. 3, 014906 (2015).

17E. E. Josberger, P. Hassanzadeh, Y. Deng, J. Sohn, M. J. Rego, C. T. Amemiya, and M. Rolandi, Sci. Adv. 2, e1600112 (2016).

18P. Feng, P. Du, C. Wan, Y. Shi, and Q. Wan, Sci. Rep. 6, 34065 (2016).

19S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Nature 410, 910 (2001).

20K. D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).

21Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong, and S. Ramanathan, Nature 534, 231 (2016).

22N. I. Pavlenko, J. Chem. Phys. 112, 8637 (2000).

23N. I. Pavlenko, Phys. Rev. B 61, 4988 (2000).

24N. I. Pavlenko and I. V. Stasyuk, J. Chem. Phys. 114, 4607 (2001).

25D. Merunka and B. Rakvin, Phys. Rev. B 79, 132108 (2009).

26J. Dolinsek, U. Mikac, J. E. Javorsek, G. Lahajnar, and R. Blinc, Phys. Rev. B 58, 8445 (1998).

27J. Lasave, P. Abufager, and S. Koval, Phys. Rev. B 93, 134112 (2016).

28D. Homouz, G. Reiter, J. Eckert, J. Mayers, and R. Blinc, Phys. Rev. Lett. 98, 115502 (2007).

29G. Beutier, S. P. Collins, G. Nisbet, K. A. Akimova, E. N. Ovchinnikova, A. P. Oreshko, and V. E. Dmitrienko, Phys. Rev. B 92, 214116 (2015).

30N. I. Pavlenko, A. Pietraszko, A. Pawlowski, M. Polomska, I. V. Stasyuk, and B. Hilczer, Phys. Rev. B 84, 064303 (2011).

31F. Shikanai, K. Tomiyasu, N. Aso, S. Ikeda, and T. Kamiyama, Phys. Rev. B 80, 144103 (2009).

32B. V. Merinov, A. I. Baranov, and L. A. Shuvalov, Sov. Phys. Crystallogr. 35, 200 (1990).

33M. Ichikawa, T. Gustafsson, and I. Olovsson, Solid State Commun. 87, 349 (1993).

34M. Komukae, K. Sakata, T. Osaka, and Y. Makita, J. Phys. Soc. Jpn. 63, 1009 (1994).

35Y. Luspin, D. De Sousa Meneses, P. Simon, and G. Hauret, Eur. Phys. J. 10, 215 (1999).

36Y. Matsuo, Y. Tanaka, J. Hatori, and S. Ikehata, Solid State Commun. 134, 361 (2005).

37J. Hatori, Y. Matsuo, and S. Ikehata, Solid State Commun. 140, 452 (2006).

38Y. Yoshida, J. Hatori, H. Kawakami, Y. Matsuo, and S. Ikehata, Symmetry 4, 507 (2012).

39B. V. Merinov, N. B. Bolotina, A. I. Baranov, and L. A. Shuvalov, Sov. Phys. Crystallogr. 33, 824 (1988).

40R. Sonntag, R. Melzer, T. Wessels, and P. G. Radaelli, Acta Cryst. C 53, 1529 (1997).

41N. I. Pavlenko, J. Phys. Condens. Matter 11, 5099 (1999).

42H. Kamimura, Solid State Ionics 180, 471 (2009).

43T. Ito and H. Kamimura, J. Phys. Soc. Jpn. 67, 1999 (1998). 44Y. Yamada and S. Ikeda, J. Phys. Soc. Jpn. 63, 3691 (1994).

45S. Ikeda and Y. Yamada, Physica B 213-214, 652 (1995).

46E. J. Supahr, L. Wen, M. Stavola, L. A. Boatner, L. C. Feldman, N. H. Tolk, and G. Lüpke, Phys. Rev. Lett. 102, 075506 (2009).

47H. Matsui, K. Iwamoto, D. Mochizuki, S. Osada, Y. Asakura, and K. Kuroda, J. Chem. Phys. 143, 024503 (2015).

48M. Komukae, T. Osaka, T. Kaneko, and Y. Makita, J. Phys. Soc. Jpn. 54, 3401 (1985).

49G. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002).

50K. Gesi, J. Phys. Soc. Jpn. 50, 3185 (1981).

51M. Endo, T. Kaneko, T. Osaka, and Y. Makita, J. Phys. Soc. Jpn. 52, 3829 (1983).

52V. Zelezný, J. Petzelt, Y. G. Goncharov, G. V. Kozlov, A. A. Volkov, and A. Pawlowski, Solid State Ionics 36, 175 (1989).

53P. Colomban, M. Pham-thi, and A. Novak, J. Mol. Struct. 161, 1 (1987).

54F. Fillaux, B. Marchon, and A. Novak, Chem. Phys. 86, 127 (1984).

55Y. Marechal and A. Witkowski, J. Chem. Phys. 48, 3697 (1968).

56P. Blaise, M. J. Wojcik, and O. Henri-Rousseau, J. Chem. Phys. 122, 064306 (2005).

57N. Rekik, H. Ghalla, and G. Hanna, J. Phys. Chem. A 116, 4495 (2012).

58O. H. Rousseau and P. Blaise, Quantum Oscillators (John Wiley & Sons, New Jersey, 2011).

59S. Ikeda, H. Sugimoto, and Y. Yamada, Phys. Rev. Lett. 81, 5449 (1998).

60H. Matsumoto, T. Mori, K. Iwamoto, S. Goshima, S. Kushibiki, and N. Toyota, Phys. Rev. B 79, 214306 (2009).

61J. L. Skinner and H. P. Trommsdorff, J. Chem. Phys. 89, 897 (1988).

62X. Ke and I. Tanaka, Phys. Rev. B 69, 165114 (2004).

63U. Mikac, B. Zalar, J. Dolinšek, J. Seliger, V. Žagar, O. Plyushch, and R. Blinc, Phys. Rev. B 61, 197 (2000).

64R. L. Redington, T. E. Redington, and R. L. Sams, J. Phys. Chem. A 110, 9633 (2006).

65K. Tanaka, H. Honjo, T. Tanaka, H. Kohguchi, Y. Ohshima, and Y. Endo, J. Chem. Phys. 110, 1969 (1999).

66A. A. Arias, T. A. W. Wasserman, and P. H. Vaccaro, J. Chem. Phys. 107, 5617 (1997).

67T. Baba, T. Tanaka, I. Morino, K. M. T. Yamada, and K. Tanaka, J. Chem. Phys. 110, 4131 (1999).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る