リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals

Araki Sadao 00599152 Ishii Hiroyasu Imasaka Satoshi Yamamoto Hideki 30174808 関西大学 DOI:10.1016/j.micromeso.2019.109798

2020.01.15

概要

Chabazite (CHA)-type zeolite membranes have received considerable attention regarding their high permeance and separation performance. A recent report detailing a unique preparation procedure for a CHA-type titanosilicate (Ti-CHA) zeolite—in which titanium heteroatoms were incorporated into the zeolite framework by substitution of aluminum—demonstrates excellent physico-chemical properties when compared with conventional aluminosilicate CHA-type zeolites. In this study, the synthesis of Ti-CHA zeolite membranes (Ti-CHA membrane) was investigated. The Ti-CHA membrane was synthesized on an alumina support via a secondary growth method using Ti-CHA zeolite seed crystals. The Ti-CHA membrane properties were studied as a function of seed crystal size. The average particle diameter was observed to reduce from 2.3 μm to 450 nm by increasing the loading of Ti-CHA into the synthesis gel. Regardless of the seed crystal particle size, the presence of CHA-type zeolites on the alumina support was confirmed by x-ray diffraction. UV-Vis demonstrated the incorporation of titanium heteroatoms into the zeolite framework. The results indicated the successful synthesis of the Ti-CHA membrane regardless of the seed crystal particle size. Additionally, the membrane thickness decreased by using the seed crystal. Single gas permeation tests showed that the thinnest Ti-CHA membrane prepared in this study exhibited a relatively high CO2 permeance of 1.5×10−6 mol m−2 s−1 Pa−1, compared with that of previously reported CHA-type zeolite membranes. The influence of moisture on the separation performance of the Ti-CHA membrane was evaluated in the presence of gas mixtures composed of CO2, methane and H2O ranging from 0.1 to 5 vol.%. In the presence of 1 vol.% H2O, the CO2 permeance and selectivity were only marginally reduced as a result of the highly hydrophobic pore structure.

この論文で使われている画像

参考文献

[1] N. Kosinov, J. Gascon, F. Kapteijn, E. J. M. Hensen, Recent developments in zeolite membranes for gas separation, J. Membr. Sci. 499 (2016) 65–79.

[2] T. Tomita, K. Nakayama, H. Sakai, Gas separation characteristics of DDR type zeolite membrane, Micropor. Mesopor. Mater. 68 (2004) 71–75.

[3] K. Kida, Y. Maeta, K. Yogo, Preparation and gas permeation properties on pure silica CHA-type zeolite membranes, J. Membr. Sci. 522 (2017) 363–370.

[4] K. Kida, Y. Maeta, K. Yogo, Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation, Sep. Purif. Technol. 197 (2018) 116–121.

[5] X. Chen, P. Chen, H. Kita, Pervaporation through TS-1 membrane, Micropor. Mesopor. Mater. 115 (2008) 164–169.

[6] P. Chen, X. Chen, X. Chen, H. Kita, Preparation and catalytic activity of titanium silicalite-1 zeolite membrane with TPABr as template, J. Membr. Sci. 330 (2009) 369–378.

[7] M. Miyamoto, Y. Fujiokax. K. Yogo, Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure, J. Mater. Chem. 22 (2012) 20186–20189.

[8] S. Imasaka, M. Itakura, K. Yano, S. Fujita, M. Okada, Y. Hasegawa, C. Abe, S. Araki, H. Yamamoto, Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties, Sep. Purif. Technol. 199 (2018) 298–303.

[9] N. Kosinov, C. Auffret, C. G¨uc¨uyener, B. M. Szyja, J. Gascon, F.Kapteijn, E. J. M. Hensen, High flux high-silica SSZ-13 membrane for CO2 Separation, J. Mater. Chem. A. 2 (2014) 13083–13092.

[10] H. Maghsoudi, M. Soltanieh, Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane, J. Membr. Sci. 470 (2014) 159–165.

[11] Y. Zheng, N. Hu, H. Wang, N. Bu, F. Zhang, R. Zhou, Preparation of steam-stable high-silica CHA(SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation, J. Membr. Sci. 475 (2015) 303–310.

[12] H. Kalipcilar, T. C. Bowen, R. D. Noble, J. L. Falconer, Synthesis and Separation Performance of SSZ-13 Zeolite Membranes on Tubular Supports, Chem. Mater. 14 (2002) 3458–3464.

[13] T. Wu, M. C. Diaz, Y. Zheng, R. Zhou, H. H. Funke, J. L. Falconer, R. D. Noble, Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes, J. Membr. Sci. 473 (2015) 201–209.

[14] L. Yu, A. Holmgren, M. Zhou, J. Hedlund, Highly permeable CHA membrane prepared by fluoride synthesis for efficient CO2/CH4 separation, J. Mater. Chem. A, 6 (2018) 6847–6853.

[15] S. Imasaka, H. Ishii, J. Hayashi, S. Araki, H. Yamamoto, Synthesis of CHA-type titanosilicate zeolites using titanium oxide as Ti source and evaluation of their physicochemical properties, Micropor. Mesopor. Mater. 273 (2019) 243–248.

[16] J. Zhang, X. Liu, M. Li, C. Liu, D. Hu, G. Zeng, Y. Zhang, Y. Sun, Fast synthesis of submicron all-silica CHA zeolite particles using a seeding method, RSC Adv, 5 (2015) 27087–27090.

[17] Q. Zhu, J. N. Kondo, R. Ohnuma, Y. Kubota, M. Yamaguchi, T. Tatsumi, The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites, Micropor. Mesopor. Mater. 112 (2008) 153–161.

[18] M. Tamura, W. Chaikittisilp, T. Yokoi, T. Okubo, Incorporation process of Ti species into the framework of MFI type zeolite, Micropor. Mesopor. Mater. 112 (2008) 202–210.

[19] Y. Kunitake, T. Takata, Y. Yamasaki, N. Yamanaka, N. Tsunoji, Y. Takamitsu, M. Sadakane, T. Sano, Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite, Micropor. Mesopor. Mater. 215 (2015) 58–66.

[20] P. Bai, M. Tsapatsis, J. I. Siepmann, TraPPE-zeo: Transferable Potentials for Phase Equilibria Force Field for All-Silica Zeolites, J. Phys. Chem. C. 117 (2013) 23475–24387.

[21] Y. Chen, Y. Zhang, C. Zhang, J. Jiang, X. Gu, Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4, J. CO2 Util. 18 (2017) 30–40.

[22] J. C. Poshusta, R. D. Noble, J. L. Falconer, Characterization of SAPO-34 membranes by water adsorption, J. Membr. Sci. 186 (2001) 25–40

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る