リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Control over the Hydrophilicity in the Pores of Covalent Organic Framework Membranes for High-Flux Separation of Dyes from Water」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Control over the Hydrophilicity in the Pores of Covalent Organic Framework Membranes for High-Flux Separation of Dyes from Water

Li, Zhan Das, Saikat Sekine, Taishu Mabuchi, Haruna Kaneko, Ryo Sakai, Jin Irie, Tsukasa Kamio, Eiji Yoshioka, Tomohisa Suo, Jinquan Fang, Qianrong Kawawaki, Tokuhisa Matsuyama, Hideto Negishi, Yuichi 神戸大学

2022.12.23

概要

Membrane separation is making substantial contributions to water purification. Particularly important is the pore-size control designed for molecular sieving. Regarding water permeation, filtration experiments accentuate the importance of hydrophilic pores in enhancing the water adsorption capacity, while hydrophobic pores enable low-friction water diffusion. To reach both the criteria, we herein precisely design the pore metrics and pore functionalities to prepare a covalent organic framework (COF), termed TUS-46, membrane. Credited with pore sizes befitting for size-selective molecular exclusion and negative electrostatic pore walls, the TUS-46 COF membrane shows excellent rejection performance toward anionic dyes. Attributed to the free aldehyde functionalities in the framework resulting from unbalanced stoichiometry, the TUS-46 COF membrane also shows a 10-fold higher water permeance compared to the analogue COF membrane without free aldehyde functionalities. In particular, the in situ construction of hydrophilic nanospaces partaking in high water uptake and hydrophobic nanospaces facilitating fast water diffusion in a single COF structure endows the TUS-46 membranes with unprecedentedly high water flux. The stoichiometric imbalance approach presented herein offers a different route to COF membrane fabrication and may impart with an unprecedented control handle on the permeability and separation selectivity of COF membranes.

参考文献

(1) Key Components of Civilization; https://education. nationalgeographic.org/resource/key-components-civilization

(2) Xu, J.; Xu, M.; Zhao, Y.; Wang, S.; Tao, M.; Wang, Y. Spatialtemporal distribution and evolutionary characteristics of water environment sudden pollution incidents in China from 2006 to 2018. Sci. Total Environ. 2021, 801, No. 149677.

(3) The impact of textile production and waste on the environment (infographic); https://www.europarl.europa.eu/news/en/headlines/ society/20201208STO93327/the-impact-of-textile-production-andwaste-on-the-environment-infographic # :~:text= Textile%20production%20is%20estimated%20to,into%20the %20ocean%20a%20year.

(4) Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, No. e02711.

(5) Kuvarega, A. T.; Mamba, B. B. Photocatalytic Membranes for Efficient Water Treatment. In Semiconductor Photocatalysis - Materials, Mechanisms and Applications; Cao, W., Eds.; IntechOpen: London, United Kingdom, 2016.

(6) Kumar, R.; Ismail, A. F. Fouling control on microfiltration/ ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 2015, 132, 42042−45749.

(7) Moon, J. D.; Freeman, B. D.; Hawker, C. J.; Segalman, R. A. Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes? Macromolecules 2020, 53, 5649−5654.

(8) Kang, X.; Cheng, Y.; Wen, Y.; Qi, J.; Li, X. Bio-inspired codeposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment. J. Hazard. Mater. 2020, 400, No. 123121.

(9) Wang, N.; Ji, S.; Zhang, G.; Li, J.; Wang, L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem. Eng. J. 2012, 213, 318− 329.

(10) Kang, H.; Shi, J.; Liu, L.; Shan, M.; Xu, Z.; Li, N.; Li, J.; Lv, H.; Qian, X.; Zhao, L. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes. Appl. Surf. Sci. 2018, 428, 990−999.

(11) Zhang, Q.; Qian, X.; Thebo, K. H.; Cheng, H.-M.; Ren, W. Controlling reduction degree of graphene oxide membranes for improved water permeance. Sci. Bull. 2018, 63, 788−794.

(12) Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219−230.

(13) Jun, B.-M.; Al-Hamadani, Y. A. J.; Son, A.; Park, C. M.; Jang, M.; Jang, A.; Kim, N. C.; Yoon, Y. Applications of metal-organic framework based membranes in water purification: A review. Sep. Purif. Technol. 2020, 247, No. 116947.

(14) Zhang, M.-Y.; Wang, X.-P.; Lin, R.; Liu, Y.; Chen, F.-S.; Cui, L.- S.; Meng, X.-M.; Hou, J. Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal. J. Membr. Sci. 2021, 618, No. 118630.

(15) Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665−2681.

(16) Zhang, S.; Zhao, S.; Jing, X.; Niu, Z.; Feng, X. Covalent organic framework-based membranes for liquid separation. Org. Chem. Front. 2021, 8, 3943−3967.

(17) Banerjee, T.; Haase, F.; Trenker, S.; Biswal, B. P.; Savasci, G.; Duppel, V.; Moudrakovski, I.; Ochsenfeld, C.; Lotsch, B. V. Substoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers. Nat. Commun. 2019, 10, 2689.

(18) Chen, L.; Gong, C.; Wang, X.; Dai, F.; Huang, M.; Wu, X.; Lu, C.-Z.; Peng, Y. Substoichiometric 3D Covalent Organic Frameworks Based on Hexagonal Linkers. J. Am. Chem. Soc. 2021, 143, 10243− 10249.

(19) Materials Studio ver. 7.0; Accelrys Inc.: San Diego, CA.

(20) Li, X.; Gao, Q.; Aneesh, J.; Xu, H.-S.; Chen, Z.; Tang, W.; Liu, C.; Shi, X.; Adarsh, K. V.; Lu, Y.; Loh, K. P. Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chem. Mater. 2018, 30, 5743−5749.

(21) Düputell, D.; Staude, E. Heterogeneous modification of ultrafiltration membranes made from poly (vinylidene fluoride) and their characterization. J. Membr. Sci. 1993, 78, 45−51.

(22) Wu, L.; Sun, J.; Wang, Q. Poly(vinylidene fluoride)/ polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. J. Membr. Sci. 2006, 285, 290−298.

(23) Lu, K. J.; Zuo, J.; Chang, J.; Kuan, H. N.; Chung, T. S. Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation. Environ. Sci. Technol. 2018, 52, 4472−4480.

(24) Fan, H.; Gu, J.; Meng, H.; Knebel, A.; Caro, J. High-Flux Membranes Based on the Covalent Organic Framework COF-LZU1 for Selective Dye Separation by Nanofiltration. Angew. Chem., Int. Ed. 2018, 57, 4083−4087.

(25) Yang, Y.; Yu, L.; Chu, T.; Niu, H.; Wang, J.; Cai, Y. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nat. Commun. 2022, 13, 2615.

(26) Zhang, R.; Ji, S.; Wang, N.; Wang, L.; Zhang, G.; Li, J. R. Coordination-Driven In Situ Self-Assembly Strategy for the Preparation of Metal−Organic Framework Hybrid Membranes. Angew. Chem., Int. Ed. 2014, 53, 9775−9779.

(27) Wang, N.; Li, X.; Wang, L.; Zhang, L.; Zhang, G.; Ji, S. Nanoconfined Zeolitic Imidazolate Framework Membranes with Composite Layers of Nearly Zero Thickness. ACS Appl. Mater. Interfaces 2016, 8, 21979−21983.

(28) Liu, C.; Jiang, Y.; Nalaparaju, A.; Jiang, J.; Huang, A. Postsynthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. J. Mater. Chem. A 2019, 7, 24205−24210.

(29) Xu, F.; Wei, M.; Zhang, X.; Song, Y.; Zhou, W.; Wang, Y. How Pore Hydrophilicity Influences Water Permeability? Research 2019, 2019, 2581241.

(30) Wang, S.; Xie, Y.; He, G.; Xin, Q.; Zhang, J.; Yang, L.; Li, Y.; Wu, H.; Zhang, Y.; Guiver, M. D.; Jiang, Z. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations. Angew. Chem., Int. Ed. 2017, 56, 14246−14251.

(31) Sun, K.; Wang, C.; Dong, Y.; Guo, P.; Cheng, P.; Fu, Y.; Liu, D.; He, D.; Das, S.; Negishi, Y. Ion-Selective Covalent Organic Framework Membranes as a Catalytic Polysulfide Trap to Arrest the Redox Shuttle Effect in Lithium−Sulfur Batteries. ACS Appl. Mater. Interfaces 2022, 14, 4079−4090.

(32) Yu, S.; Chen, Z.; Cheng, Q.; Lü, Z.; Liu, M.; Gao, C. Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions. Sep. Purif. Technol. 2012, 88, 121−129.

(33) Tang, H.; Ji, S.; Gong, L.; Guo, H.; Zhang, G. Tubular ceramicbased multilayer separation membranes using spray layer-by-layer assembly. Polym. Chem. 2013, 4, 5621−5628.

(34) Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013, 23, 3693− 3700.

(35) Wang, L.; Wang, N.; Li, J.; Li, J.; Bian, W.; Ji, S. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance. Sep. Purif. Technol. 2016, 160, 123−131.

(36) Ding, J.; Wu, H.; Wu, P. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization. J. Membr. Sci. 2020, 598, No. 117658.

(37) Ding, W.; Zhuo, H.; Bao, M.; Li, Y.; Lu, J. Fabrication of organic-inorganic nanofiltration membrane using ordered stacking SiO2 thin film as rejection layer assisted with layer-by-layer method. Chem. Eng. J. 2017, 330, 337−344.

(38) Zhao, G.; Wang, X.; Li, C.; Meng, H. Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Appl. Surf. Sci. 2020, 508, No. 144788.

(39) Mi, Y. F.; Wang, N.; Qi, Q.; Yu, B.; Peng, X. D.; Cao, Z. H. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination. Sep. Purif. Technol. 2020, 248, No. 117079.

(40) Ding, J.; Wu, H.; Wu, P. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation. Chem. Eng. J. 2020, 396, No. 125199.

(41) Pan, F.; Guo, W.; Su, Y.; Khan, N. A.; Yang, H.; Jiang, Z. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Sep. Purif. Technol. 2019, 215, 582−589.

(42) Weng, R.; Huang, X.; Liao, D.; Xu, S.; Peng, L.; Liu, X. A novel cellulose/chitosan composite nanofiltration membrane prepared with piperazine and trimesoyl chloride by interfacial polymerization. RSC Adv. 2020, 10, 1309−1318.

(43) Zhao, S.; Zhu, H.; Wang, Z.; Song, P.; Ban, M.; Song, X. A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment. Chem. Eng. J. 2018, 353, 460−471.

(44) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 2014, 4, 15−25.

(45) VandeVondele, J.; Hutter, J. An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 2003, 118, 4365−4369.

(46) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103−128.

(47) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

(48) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(49) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456−1465.

(50) Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703−1710.

(51) Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641−3662.

(52) Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73−78.

(53) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297−3305.

(54) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057−1065.

(55) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378−6396.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る