リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inverse change in positron lifetimes of vacancies in tungsten by binding of interstitial impurity atoms to a vacancy: A first-principles study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inverse change in positron lifetimes of vacancies in tungsten by binding of interstitial impurity atoms to a vacancy: A first-principles study

Yabuuchi, Atsushi 京都大学 DOI:10.1016/j.nme.2023.101364

2023.03

概要

First-principles calculations related to defect complexes formed from a monovacancy and multiple interstitial impurity atoms (hydrogen, carbon, nitrogen, and oxygen atoms) in tungsten were performed. The most stable atomic configurations, the electron density distributions, the binding energies of impurity atoms, and the positron lifetimes of each defect complex were calculated. In calculating positron lifetimes, slight deviations in the initial positions of the H atoms were found to be enhanced by positron localization, which affected the positron lifetimes of the vacancy-hydrogen complexes. In addition, the positron lifetimes of vacancy-nitrogen and vacancy-oxygen complexes were found to become longer in some cases with increasing numbers of impurity atoms that bound to the vacancy. Such longer positron lifetimes with increasing numbers of binding impurity atoms were attributed to the fact that the impurity atoms bind slightly further away from the vacancy, expanding the tungsten lattice.

参考文献

[1] R.W. Siegel, Positron annihilation spectroscopy, Annu. Rev. Mater. Sci. 10 (1980)

393, http://dx.doi.org/10.1146/annurev.ms.10.080180.002141.

[2] F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron

annihilation: Experiment and theory, Rev. Modern Phys. 85 (2013) 1583, http:

//dx.doi.org/10.1103/RevModPhys.85.1583.

[3] J. Čížek, Characterization of lattice defects in metallic materials by positron

annihilation spectroscopy: A review, J. Mater. Sci. Technol. 34 (2018) 577,

http://dx.doi.org/10.1016/j.jmst.2017.11.050.

[4] F.A. Selim, Positron annihilation spectroscopy of defects in nuclear and irradiated

materials- A review, Mater. Charact. 174 (2021) 110952, http://dx.doi.org/10.

1016/j.matchar.2021.110952.

[5] P. Wilhartitz, R. Krismer, H. Hutter, M. Grasserbauer, S. Weinbruch, H.M.

Ortner, 3D-SIMS analysis of ultra high purity molybdenum and tungsten: A

characterisation of different manufacturing techniques and products, Fresenius’

J. Anal. Chem. 353 (1995) 524, http://dx.doi.org/10.1007/BF00321315.

[6] A. Yabuuchi, M. Tanaka, A. Kinomura, Short positron lifetime at vacancies

observed in electron-irradiated tungsten: Experiments and first-principles calculations, J. Nucl. Mater. 542 (2020) 152473, http://dx.doi.org/10.1016/j.jnucmat.

2020.152473.

[7] K. Heinola, T. Ahlgren, Diffusion of hydrogen in BCC tungsten studied with first

principle calculations, J. Appl. Phys. 107 (2010) 113531, http://dx.doi.org/10.

1063/1.3386515.

[8] A. Alkhamees, Y.-L. Liu, H.-B. Zhou, S. Jin, Y. Zhang, G.-H. Lu, First-principles

investigation on dissolution and diffusion of oxygen in tungsten, J. Nucl. Mater.

393 (2009) 508, http://dx.doi.org/10.1016/j.jnucmat.2009.07.012.

[9] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt,

C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval,

D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B.

Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y.

Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A.

Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J. T. Oliveira,

S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O.

Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye,

M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J.W. Zwanziger, Recent

developments in the ABINIT software package, Comput. Phys. Comm. 205 (2016)

106, http://dx.doi.org/10.1016/j.cpc.2016.04.003.

Nuclear Materials and Energy 34 (2023) 101364

A. Yabuuchi

[30] X.-S. Kong, Y.-W. You, C. Song, Q.F. Fang, J.-L. Chen, G.-N. Luo, C.S. Liu, First

principles study of foreign interstitial atom (carbon, nitrogen) interactions with

intrinsic defects in tungsten, J. Nucl. Mater. 430 (2012) 270, http://dx.doi.org/

10.1016/j.jnucmat.2012.07.008.

[31] D. Nguyen-Manh, Ab-initio modelling of point defect-impurity interaction in

tungsten and other BCC transition metals, Adv. Mater. Res. 59 (2009) 253,

http://dx.doi.org/10.4028/www.scientific.net/AMR.59.253.

[32] Y.-L. Liu, H.-B. Zhou, S. Jin, Y. Zhang, G.-H. Lu, Dissolution and diffusion

properties of carbon in tungsten, J. Phys.: Condens. Matter 22 (2010) 445504,

http://dx.doi.org/10.1088/0953-8984/22/44/445504.

[33] Y.-L. Liu, H.-B. Zhou, Y. Zhang, G.-H. Lu, G.-N. Luo, Interaction of C with

vacancy in W: A first-principles study, Comput. Mater. Sci. 50 (2011) 3213,

http://dx.doi.org/10.1016/j.commatsci.2011.06.003.

[34] K. Sato, A. Hirosako, K. Ishibashi, Y. Miura, Q. Xu, M. Onoue, Y. Fukutoku,

T. Onitsuka, M. Hatakeyama, S. Sunada, T. Yoshiie, Quantitative evaluation

of hydrogen atoms trapped at single vacancies in tungsten using positron

annihilation lifetime measurements: Experiments and theoretical calculations, J.

Nucl. Mater. 496 (2017) 9, http://dx.doi.org/10.1016/j.jnucmat.2017.09.002.

[35] A. Alkhamees, H.-B. Zhou, Y.-L. Liu, S. Jin, Y. Zhang, G.-H. Lu, Vacancy trapping

behaviors of oxygen in tungsten: A first-principles study, J. Nucl. Mater. 437

(2013) 6, http://dx.doi.org/10.1016/j.jnucmat.2013.01.317.

[36] T. Troev, E. Popov, P. Staikov, N. Nankov, T. Yoshiie, Positron simulations of

defects in tungsten containing hydrogen and helium, Nucl. Instrum. Methods

Phys. Res. B 267 (2009) 535, http://dx.doi.org/10.1016/j.nimb.2008.11.045.

[37] P. Staikov, N. Djourelov, Simulations of ⟨100⟩ edge and 1/2⟨111⟩ screw dislocations in 𝛼-iron and tungsten and positron lifetime calculations, Phys. B 413

(2013) 59, http://dx.doi.org/10.1016/j.physb.2012.12.026.

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る