リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of Neutrino Interactions on Water using Nuclear Emulsion Detectors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of Neutrino Interactions on Water using Nuclear Emulsion Detectors

Hiramoto, Ayami 京都大学 DOI:10.14989/doctor.k23001

2021.03.23

概要

本論文は、原子核乾板を使った新しいニュートリノ実験で、加速器からのニュートリノビームと水との反応を高精度で測定した結果について報告している。ニュートリノ反応の理解はニュートリノ振動研究の進展に必要不可欠であり、本論文はそのための重要な結果である。

ニュートリノ振動は、現代の素粒子標準模型を超えた新現象であり、ニュートリノの性質、特にニュートリノ質量とその混合を理解するために、世界各国で精力的に研究が進んでいる。その中で加速器ニュートリノビームを使った実験は、実験条件を最適化することで良い測定精度が達成できること、ニュートリノの反粒子である反ニュートリノをビームとして利用することで粒子と反粒子の対称性の破れ(CP対称性)を探索できること、から注目されている。加速器ニュートリノ振動実験でもっとも懸念されている系統誤差がニュートリノ反応の不定性であり、本論文の研究目的はこのニュートリノ反応の不定性の削減である。

本論文では、茨城県東海村にある大強度陽子加速器J-PARCで(反)ミュー型ニュートリノビームを生成し、J-PARC内に新たに製作した検出器でニュートリノビームと水との反応をこれまでにない感度で測定した。水を標的に使う理由は、同じくJ-PARCで行われているニュートリノ振動実験T2Kの測定器スーパーカミオカンデが水を標的としているためである。本論文では、原子核乾板という実験技術を使うことで、これまで測定できなかった低運動量の荷電粒子(陽子で200MeV/c)の検出に成功し、ニュートリノ反応の精密な理解に向けて大きな一歩を進めた。

論文は大きく3部構成となっている。第1部は、ニュートリノ物理のレビューとT2K実験の解説である。ニュートリノ物理のレビューでは、ニュートリノ反応の物理とその物理モデルについて丁寧に解説し、本研究の意義を十分に説明している。また、平本氏はT2K実験もおこなっており、T2K実験で責任を持っていたニュートリノビームの測定について説明している。第2部は原子核乾板を使ったニュートリノ反応実験NINJAの物理結果についてである。氏が自身で開発したシンチレーションファイバートラッカー測定器の説明を含め、NINJA実験の解析方法、シミュレーションによる検出効率の計算、系統誤差の評価方法と、細部にわたり詳細に説明されている。その成果として、NINJA実験はニュートリノと水との反応で生成された陽子や荷電π中間子を、これまでにない低運動量領域まで測定することに成功した。実験結果は、ニュートリノ反応断面積、生成された荷電粒子の多重度測定、その運動量測定であり、ニュートリノ反応の理解を進める重要な物理量を決定した。第3部は今回の測定結果を元に、NINJA実験で将来達成できる物理感度を見積もり、更にT2K実験で如何に系統誤差を改善するかを考察している。NINJA実験の特徴はその測定量が多数あることで、平本氏は機械学習を用いた多変数解析手法を開発し、その解析を実行した。本論文は、ニュートリノ反応とニュートリノ振動の研究において非常に重要な結果であり、素粒子物理学において重要な結果である。

まとめると、本論文は、ニュートリノビームと原子核乾板を使った新しい実験手法によりニュートリノと水との反応過程を高感度で測定した、ニュートリノ振動研究において重要な結果となっている。

この論文で使われている画像

参考文献

[1] W. Pauli, “Pauli letter collection”, Pauli Archives at CERN

[2] F. Reines and C. L. Cowan et al., “Detection of the free antineutrino”, Phys. Rev. 117, 159 (1960).

[3] G. Danby et al., “Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos”, Phys. Rev. Lett. 9, 34 (1962).

[4] K. Kodama et al. (DONUT Collaboration), “Observation of tau neutrino interactions”, Phys. Lett. B 504, 218 (2001).

[5] D. DeCamp et al. (ALEPH Collaboration), “Determination of the number of light neutrino species”, Phys. Lett. B 231, 519 (1989).

[6] The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, The OPAL Collaboration, The SLD Collaboration, The LEP Electroweak Working Group, The SLD Electroweak and Heavy Flavour Groups, “Precision electroweak measurements on the Z resonance”, Phys. Rept. 427 257 (2006).

[7] N. Aghanim et al. (Planck Collaboration), “Planck 2018 results VI. Cosmological parameters”, Astron. Astrophys. 641, A6 (2020).

[8] Z. Maki, M. Nakagawa, S. Sakata, “Remarks on the Unified Model of Elementary Particles”, Prog. Theor. Phys. 28, 870 (1962).

[9] E. Majorana, “Theory of the Symmetry of Electrons and Positrons”, Nuovo Cim. 14, 171 (1937).

[10] L. Wolfenstein, “Neutrino oscillations in matter”, Phys. Rev. D 17, 2369 (1978).

[11] S. P. Mikheyev and A. Yu. Smirnov, “Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy”, Nuovo Cim. C 9, 17 (1986).

[12] W. Hampel et al. (GALLEX Collaboration), “GALLEX solar neutrino observations: results for GALLEX IV”, Phys. Lett. B 447, 127 (1999).

[13] M. Altmann et al. (GNO Collaboration), “GNO solar neutrino observations: results for GNO I”, Phys. Lett. B 490, 16 (2000).

[14] K. Abe et al. (Super-Kamiokande Collaboration), “Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV”, Phys. Rev. D 97, 072001 (2018).

[15] R. Davis, D. S. Harmer, and K. C. Hoffman, “Search for Neutrinos from the Sun”, Phys. Rev. Lett. 20, 1205 (1968).

[16] M. Cribier et al. (GALLEX Collaboration), “Results of the whole GALLEX experiment”, Nucl. Phys. B-Proc. Sup. 70, 284 (1999).

[17] K. S. Hirata et al., “Observation of 8B solar neutrinos in the Kamiokande-II detector”, Phys. Rev. Lett. 63, 16 (1989).

[18] J. N. Abdurashitov et al. (SAGE Collaboration), “Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year solar cycle”, J. Exp. Theor. Phys. 95, 181 (2002).

[19] T. K. Gaisser and M. Honda, “Flux of Atmospheric Neutrinos”, Ann. Rev. Nucl. Part. Sci. 52, 153 (2002).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), “Evidence for Oscillation of Atmospheric Neutrinos”, Phys. Rev. Lett 81, 1562 (1998).

[21] S. Fukuda et al. (Super-Kamiokande Collaboration), ”Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data”, Phys. Rev. Lett. 86, 5656 (2001).

[22] Q. R. Ahmad et al. (SNO Collaboration), “Measurement of the Rate of νe + d → p + p + e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory”, Phys. Rev. Lett. 87, 071301 (2001).

[23] I. Esteban et al., “The fate of hints: updated global analysis of three-flavor neutrino oscillations”, J. High Energ. Phys. 2020, 178 (2020).

[24] K. Abe et al. (Super-Kamiokande Collaboration), “Solar neutrino measurements in Super-Kamiokande-IV”, Phys. Rev. D 94, 052010 (2016).

[25] B. Aharmim et al. (SNO Collaboration), “Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory”, Phys. Rev. C 88, 025501 (2013).

[26] G. Bellini et al. (Borexino Collaboration), “Precision Measurement of the 7Be Solar Neutrino Interaction Rate in Borexino”, Phys. Rev. Lett. 107, 141302 (2011).

[27] S. Abe et al. (The KamLAND Collaboration), “Precision Measurement of Neutrino Oscillation Parameters with KamLAND”, Phys. Rev. Lett. 100, 221803 (2008).

[28] M. H. Ahn et al. (K2K Collaboration), “Measurement of neutrino oscillation by the K2K experiment”, Phys. Rev. D 74, 072003 (2006).

[29] P. Adamson et al. (MINOS+ Collaboration), “Precision Constraints for Three-Flavor Neutrino Oscillations from the Full MINOS+ and MINOS Dataset”, Phys. Rev. Lett. 125, 131802 (2020).

[30] P. Dunne (T2K Collaboration), “Latest Neutrino Oscillation Results from T2K”, The XXIX International Conference on Neutrino Physics and Astrophysics (2020).

[31] A. Himmel (NOνA Collaboration), “New Oscillation Results from the NOvA Experiment”, The XXIX International Conference on Neutrino Physics and Astrophysics (2020).

[32] M. G. Aartsen et al. (IceCube Collaboration), “Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore”, Phys. Rev Lett. 120, 071801 (2018).

[33] M. Apollonio et al., “Limits on neutrino oscillations from the CHOOZ experiment”, Phys Lett. B 466, 415 (1999).

[34] K. Abe et al. (T2K Collaboration),“Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam”, Phys. Rev. Lett. 107, 041801 (2011).

[35] D. Adey et al. (The Daya Bay Collaboration), “Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay”, Phys. Rev. Lett. 121, 241805 (2018).

[36] H. de Kerret et al. (The Double Chooz Collaboration), “Double Chooz θ13 measurement via total neutron capture detection”, Nature Phys. 16, 558 (2020).

[37] G. Bak et al. (RENO Collaboration), “Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO”, Phys. Rev. Lett. 121, 201801 (2018).

[38] N. Cabibbo, “Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett. 10, 531 (1963).

[39] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys. 49, 652 (1973).

[40] A. D. Sakharov, “Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe”, Sov. Phys. Usp. 34, 392 (1991).

[41] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, “Evidence for the 2π Decay of the K0 2 meson”, Phys. Rev. Lett. 13, 138 (1964).

[42] B. Aubert et al. (BABAR Collaboration), “Measurement of CP-violating Asymmetries in B0 Decays to CP Eigenstates”, Phys. Rev. Lett. 86, 2515 (2001).

[43] K. Abe et al. (Belle Collaboration), “Observation of Large CP Violation in the Neutral B Meson System”, Phys. Rev. Lett. 87, 091802 (2001).

[44] K. Abe et al. (T2K Collaboration), “The T2K experiment”, Nucl. Instrum. Meth. A 659, 106 (2011).

[45] K. Abe et al. (T2K Collaboration), “Evidence of electron neutrino appearance in a muon neutrino beam”, Phys. Rev. D 88, 032002 (2013).

[46] K. Abe et al. (Hyper-Kamiokande Proto-Collaboration), “Physics potential of a longbaseline neutrino oscillation experiment using a J-PARC neutrino beam and HyperKamiokande”, Prog. Theor. Exp. Phys. 2015, 053C02 (2015).

[47] R. Acciarri et al. (DUNE Collaboration), “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF”, arXiv:1512.06148 [physics.insdet] (2015).

[48] L. Aliaga et al. (MINERνA Collaboration), “Design, calibration and performance of the MINERvA detector”, Nucl. Instrum. Meth. A 743, 130 (2014).

[49] R. Acciarri et al. (MicroBooNE collaboration), “Design and Construction of the MicroBooNE Detector”, JINST 12, P02017 (2017).

[50] K. Suzuki, “Measurement of the Muon Beam Properties and Muon Neutrino Inclusive Charged-Current Cross Section in an Accelerator-Produced Neutrino Experiment”, Ph.D. Thesis, Kyoto University (2015).

[51] A. K. Ichikawa, “Design concept of the magnetic horn system for the T2K neutrino beam”, Nucl. Instrum. Meth. A 690, 27 (2012).

[52] K. Matsuoka et al., “Development and production of the ionization chamber for the T2K muon monitor”, Nucl. Instrum. Meth. A 623, 385 (2010).

[53] K. Matsuoka et al., “Design and performance of the muon monitor for the T2K neutrino oscillation experiment”, Nucl. Instrum. Meth. A 624, 591 (2010).

[54] Y. Ashida et al., “A new electron-multiplier-tube-based beam monitor for muon monitoring at the T2K experiment”, Prog. Theor. Exp. Phys. 2018, 103H01 (2018).

[55] S. Gomi et al., “Development and study of the multi pixel photon counter”, Nucl. Instrm. Meth. A 581, 427 (2007).

[56] M. Yokoyama et al., “Application of Hamamatsu MPPCs to T2K neutrino detectors”, Nucl. Instrm. Meth. A 610, 128 (2009).

[57] M. Barranco-Luque et al. (UA1 Collaboration), “The construction of the central detector for an experiment at the CERN p−p collider”, Nucl. Instrum. and Meth. 176, 175 (1980).

[58] S. Assylbekov et al., “The T2K ND280 off-axis pi-zero detector”, Nucl. Instrum. Meth A 686, 48 (2012).

[59] N. Abgrall et al., “The T2K fine-grained detectors”, Nucl. Instrum. Meth. A 696, 1 (2012).

[60] I. Giomataris et al., “Micromegas in a bulk”, Nucl. Instrum. Meth. A 560, 405 (2006).

[61] P. A. Amaudruz et al., “Time projection chambers for the T2K near detectors”, Nucl. Instrum. Meth. A 637, 25 (2011).

[62] D. Allan et al., “The electromagnetic calorimeter for the T2K near detector ND280”, JINST 8, P10019 (2013).

[63] S. Aoki et al., “The T2K Side Muon Range Detector (SMRD)”, Nucl. Instrum. Meth. A 698, 135 (2013).

[64] K. Abe et al. (T2K Collaboration), “Measurement of the νµ charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam”, Phys. Rev. D 91, 112002 (2015).

[65] K. Abe et al. (T2K Collaboration), “Measurement of the νµ charged-current quasielastic cross section on carbon with the ND280 detector at T2K”, Phys. Rev. D 92, 112003 (2015).

[66] K. Abe et al. (T2K Collaboration), “Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam”, Phys. Rev. D 93, 112012 (2016).

[67] K. Abe et al. (T2K Collaboration), “First measurement of the νµ charged-current cross section on a water target without pions in the final state”, Phys. Rev. D 97, 012001 (2018).

[68] K. Abe et al. (T2K Collaboration), “Characterization of nuclear effects in muonneutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K”, Phys. Rev. D 98, 032003 (2018).

[69] K. Abe et al. (T2K Collaboration), “Measurement of the muon neutrino chargedcurrent cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors”, Prog. Theor. Exp. Phys. 2019, 093C02 (2019).

[70] K. Abe et al. (T2K Collaboration), “First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K”, Phys. Rev. D 101, 112001 (2020).

[71] K. Abe et al. (T2K Collaboration), “Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K”, Phys. Rev. D 101, 112004 (2020).

[72] Y. Itow, et al., “The JHF-Kamioka neutrino project”, arXiv:hep-ex/0106019 (2001).

[73] N. Abgrall et al. (NA61/SHINE Collaboration), “Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c”, Phys. Rev. C 84, 034604 (2011).

[74] N. Abgrall et al. (NA61/SHINE Collaboration), “Measurement of production properties of positively charged kaons in proton–carbon interactions at 31 GeV/c”, Phys. Rev. C 85, 035210 (2012).

[75] N. Abgrall et al. (NA61/SHINE Collaboration), “Measurements of π ±, K±, K0 s , Λ and proton production in proton-carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS”, Eur. Phys. J. C 76, 84 (2016).

[76] N. Abgrall et al. (NA61/SHINE Collaboration), “Measurements of π ± differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS”, Eur. Phys. J. C 76, 617 (2016).

[77] T. Koseki, “Upgrade Plan of J-PARC MR – Toward 1.3 MW Beam Power”, In Proceedings, 9th International Particle Accelerator Conference (IPAC 2018): Vancouver, BC Canada, page TUPAK005, (2018).

[78] K. L. Miller et al., “Study of the reaction νµd → µ −pps”, Phys. Rev. D 26, 537 (1982).

[79] T. Kitagaki et al., “High-energy quasielastic νµn → µ −p scattering in deuterium”, Phys. Rev. D 28, 436 (1983).

[80] T. Kitagaki et al., “Study of νd → µ −pps and νd → µ −∆++(1232)ns using the BNL 7-foot deuterium-filled bubble chamber”, Phys. Rev. D 42, 1331 (1990).

[81] Y. Hayato, “A neutrino interaction simulation program library NEUT”, Acta Phy. Pol. B 40, 2477 (2009).

[82] C. H. Llewellyn Smith, “Neutrino reactions at accelerator energies”, Phys. Rept. 3, 261 (1972).

[83] M. Gourdin, “Weak and electromagnetic form factors of hadrons”, Phys.Rept. 11, 29 (1974).

[84] R. Bradford, A. Bodek, H. Budd, and J. Arrington, “A New Parameterization of the Nucleon Elastic Form Factors”, Nucl. Phys. B Proc. Suppl. 159, 127 (2006).

[85] S. L. Adler, “Tests of the Conserved Vector Current and Partially Conserved AxialVector Current Hypotheses in High-Energy Neutrino Reactions”, Phys. Rev. 135, B963, (1964).

[86] D. Mund et. al, “Determination of the Weak Axial Vector Coupling Λ = gA/gv from a Measurement of the β-Asymmetry Parameter A in Neutron Beta Decay”, Phys. Rev. Lett. 110, 172502 (2013).

[87] V. Bernard et al., “Axial structure of the nucleon”, J. Phys. G: Nucl. Part. Phys. 28, R1 (2001).

[88] D. Rein and L. M. Sehgal, “Neutrino-excitation of baryon resonances and single pion production”, Annals of Physics 133, 79 (1981).

[89] K. M. Graczyk and J. T. Sobczyk, “Lepton mass effects in weak charged current single pion production”, Phys. Rev. D 77, 053003 (2008).

[90] K. M. Graczyk and J. T. Sobczyk, “Form factors in the quark resonance model”, Phys. Rev. D 77, 053001 (2008).

[91] L. Tiator et al. “Electroproduction of nucleon resonances”, Eur. Phys. J. A 19, 55 (2004).

[92] D. Rein and L. M. Sehgal, “Coherent π 0 production in neutrino reactions”, Nucl. Phys. B 223, 29 (1983).

[93] D. Rein and L. M. Sehgal, “PCAC and the deficit of forward muons in π + production by neutrinos”, Phys. Lett. B 657, 207 (2007).

[94] C. Berger and L. M. Sehgal. “Partially conserved axial vector current and coherent pion production by low energy neutrinos”, Phys. Rev. D 79, 053003 (2009).

[95] A. Higuera et al. (MINERνA Collaboration), “Measurement of Coherent Production of π ± in Neutrino and Antineutrino Beams on Carbon from Eν of 1.5 to 20 GeV”, Phys. Rev. Lett. 113, 261802 (2014).

[96] T. Sj¨ostrand, “High-energy-physics event generation with PYTHIA 5.7 and JETSET 7.4”, Comput. Phys. Commun. 82, 74 (1994).

[97] A. Bodek and U. K. Yang, “Modeling neutrino and Electron Scattering Cross Sections in the Few GeV Region with Effective LO PDFs”, AIP Conf. Proc. 670, 110 (2003).

[98] R. A. Smith and E. J. Moniz, “Neutrino reactions on nuclear targets”, Nucl. Phys. B 43, 605 (1972).

[99] J. Nieves, E. Oset and C. Garcia-Recio, “A theoretical approach to pionic atoms and the problem of anomalies”, Nucl. Phys. A 554, 509 (1993).

[100] J. Nieves, I. R. Simo and M. J. V. Vacas, “Inclusive charged-current neutrino-nucleus reactions”, Phys. Rev. C 83, 045501 (2011).

[101] O. Benhar et al., “Spectral function of finite nuclei and scattering of GeV electrons”, Nucl. Phys. A 579, 493 (1994).

[102] O. Benhar and A. Fabrocini, “Two-nucleon spectral function in infinite nuclear matter”. Phys. Rev. C 62, 034304 (2000).

[103] R. Gran et al. (K2K Collaboration), “Measurement of the quasielastic axial vector mass in neutrino interactions on oxygen”, Phys. Rev. D 74, 052002 (2006).

[104] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “First measurement of the muon neutrino charge current quasielastic double differential cross section”, Phys. Rev. D 81, 092005 (2010).

[105] L. B. Auerbach et al. (LSND Collaboration), “Measurements of charged current reactions of νµ on 12C”, Phys. Rev. C 66, 015501 (2002).

[106] V. Lyubushkin et al. (NOMAD Collaboration), “A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment”, Eur. Phys. J. C 63, 355 (2009).

[107] R. Subedi et al. “Probing Cold Dense Nuclear Matter”, Science 320, 1476 (2008).

[108] S. Dolan, “Probing nuclear effects in neutrino-nucleus scattering at the T2K offaxis near detector using transverse kinematic imbalances”, Ph.D. Thesis, University of Oxford (2017).

[109] M. Martini et al., “Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei”, Phys. Rev. C 80, 065501 (2009).

[110] R.G.Jimenez et al., “Extensions of superscaling from relativistic mean field theory: The SuSAv2 model”, Phys. Rev. C 90, 035501 (2014).

[111] L. Alvarez-Ruso et al., “NuSTEC White Paper: Status and challenges of neutrinonucleus scattering”, Prog. Part. Nucl. Phys. 100, 1 (2018).

[112] L. L. Salcedo et al., “Computer simulation of inclusive pion nuclear reactions”, Nucl. Phys. A 484, 557 (1988).

[113] P. de Perio, “NEUT pion FSI”, AIP Conf. Proc. 1405, 223 (2011).

[114] H. W. Bertini, “Nonelastic interactions of Nucleons and π Mesons with Complex Nuclei at Energies Below 3 GeV”, Phys. Rev. C 6, 631 (1972).

[115] C. Andreopoulos et al., “The GENIE neutrino Monte Carlo generator”, Nucl. Instrum. Meth. A 614, 87 (2010).

[116] T. Golan, C. Juszczak, and J. T. Sobczyk, “Effects of final-state interactions in neutrino-nucleus interactions”, Phys. Rev. C 86, 015505 (2012).

[117] D. Casper, “The nuance neutrino physics simulation, and the future”, Nucl. Phys. B Proc. Suppl. 112, 161 (2002).

[118] O. Buss et al., “Transport-theoretical description of nuclear reactions”, Phys. Rep. 512, 1 (2012).

[119] P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics”, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[120] R. Acciarri et al., “A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam”, arXiv:1503.01520 [physics.ins-det]

[121] MicoBooNE Collaboration, “Selection of νµ charged-current induced interactions with N>0 protons and performance of events with N=2 protons in the final state in the MicroBooNE detector from the BNB”, MICROBOONE-NOTE-1056-PUB (2018).

[122] R. Acciarri et al., “Detection of back-to-back proton pairs in charged-current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line”, Phys. Rev. D 90, 012008 (2014).

[123] X.-G. Lu et al., “Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy”, Phys. Rev. C 94, 015503 (2016).

[124] X.-G. Lu et al. (MINERνA Collaboration), “Measurement of Final-State Correlations in Neutrino Muon-Proton Mesonless Production on Hydrocarbon at ⟨Eν⟩ = 3 GeV”, Phys. Rev. Lett. 121, 022504 (2018).

[125] S. J. Barish et al., “Study of neutrino interactions in hydrogen and deuterium: Description of the experiment and study of the reaction ν + d → µ − + p + ps”, Phys. Rev. D 16, 3103 (1977).

[126] N. J. Baker et al., “Quasielastic neutrino scattering: A measurement of the weak nucleon axial-vector form factor”, Phys. Rev. D 23, 2499 (1981).

[127] K. Niu, E. Mikumo, and Y. Maeda, “A Possible Decay in Flight of a New Type Particle”, Prog. Theor. Phys 46, 1644 (1971).

[128] N. Agafonova et al. (OPERA Collaboration), “Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment”, Phys. Rev. Lett. 115, 121802 (2015).

[129] K. Yamada et al., “First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60”, Prog. Theor. Exp. Phys.2017, 063H02 (2017).

[130] T. Fukuda et al., “First neutrino event detection with nuclear emulsion at J-PARC neutrino beamline”, Prog. Theor. Exp. Phys. 2017, 063C02 (2017).

[131] H. Oshima et al. (NINJA Collaboration), “First measurement of the νµ chargedcurrent cross section on iron around the 1 GeV energy region using a nuclear emulsion detector”, (2020).

[132] A. Hiramoto et al. (NINJA Collaboration), “First measurement of νµ and νµ charged-current inclusive interactions on water using a nuclear emulsion detector”, Phys. Rev. D 102, 072006 (2020).

[133] H. Rokujo et al., “Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes”, Nucl. Instrum. Meth. A 701, 127 (2013).

[134] Kuraray Co., Ltd., “Plastic Scintillating Fibers”

[135] Hamamatsu Photonics K.K., S13361-3050 series Datasheet

[136] I. Nakamura et al., “A 64ch readout module for PPD/MPPC/SiPM using EASIROC ASIC”, Nucl. Instrum. Meth. A 787, 376 (2015).

[137] K. Abe et al., “T2K neutrino flux prediction”, Phys. Rev. D 87, 012001 (2013).

[138] S. Agostinelli et al., “GEANT4–a simulation toolkit”, Nucl. Instrum. Meth. A 506, 250 (2003).

[139] R. Burn et al., “GEANT: Detector Description and Simulation Tool”, CERN-W5013 (1994).

[140] A. Ferrari et al., “FLUKA: A Multi-Particle Transport Code”, CERN2005-010, SLAC-R-773, INFN-TC-05-11 (2005).

[141] T. T. B¨ohlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, Nucl. Data Sheets 120, 211 (2014).

[142] J. Nieves, I. R. Simo, M. J. V. Vacas, “The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem”, Phys. Lett. B 707, 72 (2012).

[143] J. Nieves, J. E. Amaro, M. Valverde, “Inclusive quasielastic charged-current neutrino-nucleus reactions”, Phys. Rev. C 70, 055503 (2004).

[144] K. Abe et al. (T2K Collaboration), “Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector”, Phys. Rev. D 96, 092006 (2017).

[145] J. Allison et al., “Recent developments in GEANT4”, Nucl. Instrum. Meth. A 835, 186 (2016).

[146] M. Yoshimoto et al., “Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters”, Prog. Theor. Exp. Phys. 2017, 103H01 (2017).

[147] K. Hamada et al., “Comprehensive track reconstruction tool NETSCAN 2.0 for the analysis of the OPERA Emulsion Cloud Chamber”, JINST 7, P07001 (2012).

[148] T. Fukuda et al., “The analysis of interface emulsion detector for the OPERA experiment in JAPAN Scanning facility”, JINST 5, P04009 (2010).

[149] T. Kikawa, “Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment”, Ph.D. Thesis, Kyoto University (2014).

[150] T. Koga, “Measurement of neutrino interactions on water and search for electron anti-neutrino appearance in the T2K experiment”, Ph.D. Thesis, University of Tokyo (2018).

[151] H. Maesaka, “Evidence For Muon Neutrino Oscillation In An Accelerator-based Experiment”, Ph.D. Thesis, Kyoto University (2005).

[152] K. Abe et al. (T2K Collaboration), “Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector”, Nucl. Instrum. Meth. A 694, 211 (2012).

[153] K. Kodama et al., “Momentum measurement of secondary particle by multiple coulomb scattering with emulsion cloud chamber in DONuT experiment”, Nucl. Instrum. Meth. A 574, 192 (2007).

[154] A. Agafonova et al., “Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target”, New J. Phys. 14, 013026 (2012).

[155] G. R. Lynch and O. I. Dahl, “Approximations to multiple Coulomb scattering”, Nucl. Instrm. Meth. B 58, 6 (1991).

[156] C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator: Physics and User Manual”, arXiv:1510.05494 [hep-ph] (2015).

[157] C. Berger and L. M. Sehgal, “Lepton mass effects in single pion production by neutrinos”, Phys. Rev. D 76, 113004 (2007).

[158] S. Dytman, “Final State Interactions in Neutrino–Nucleus Experiments”, Acta Phys. Pol. B 40, 2445 (2009).

[159] K. Abe et al. (T2K Collaboration), “Measurements of νµ and νµ + νµ chargedcurrent cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV”, arXiv:2004.13989 [hep-ex] (2020).

[160] K. Abe et al. (T2K Collaboration), “Measurement of the inclusive νµ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam”, Phys. Rev. D 90, 052010 (2014).

[161] S. Parsa et al., “Novel Design features of the Baby MIND Detector for T59- WAGASCI experiment”, PoS NuFact2017, 152 (2018).

[162] T. Odagawa, “Prospects and status of the physics run of the NINJA experiment”, PoS NuFact2019, 144 (2020).

[163] F. James and M. Roos, “Minuit: a system for function minimization and analysis of the parameter errors and correlations”, Comput. Phys. Commun. 10, 343 (1975).

[164] T. Hiraki, “Muon Antineutrino Disappearance Measurement by the T2K Experiment”, Ph.D. Thesis, Kyoto University (2016).

[165] K. Nakamura, “Measurement of Neutrino Oscillation with a High Intensity Neutrino Beam”, Ph.D. Thesis, Kyoto University (2018).

[166] K. Abe et al. (T2K Collaboration), “Proposal for an Extended Run of T2K to 20×1021 POT”, arXiv:1609.04111 [hep-ph] (2016).

[167] A. Hoecker et al., “TMVA - Toolkit for Multivariate Data Analysis”, arXiv:physics/0703039 [physics.data-an] (2007).

[168] S. Dolan et al., “Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements”, Phys. Rev. D 101, 033003 (2020).

[169] M. Day and K. S. McFarland, “Differences in quasielastic cross sections of muon and electron neutrinos”, Phys. Rev. D 86, 053003 (2012).

[170] K. Abe et al. (T2K Collaboration), “T2K ND280 Upgrade – Technical Design Report”, arXiv:1901.03750 [physics.ins-det] (2019).

[171] X.-G. Lu and J. T. Sobczyk, “Identification of nuclear effects in neutrino and antineutrino interactions on nuclei using generalized final-state correlations”, Phys. Rev. C 99, 055504 (2019).

[172] T. Cai, X.-G. Lu, and D. Ruterbories, “Pion-proton correlation in neutrino interactions on nuclei”, Phys. Rev. D 100, 073010 (2019).

[173] D. Coplowe et al. (MINERνA Collaboration), “Probing nuclear effects with neutrino-induced charged-current neutral pion production”, Phys. Rev. D 102, 072007 (2020).

[174] L. Pickering, “Examining Nuclear Effects in Neutrino Interactions with Transverse Kinematic Imbalance”, JPS Conf. Proc. 12, 010032 (2016).

[175] T. Cai et al. (MINERνA Collaboration), “Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions”, Phys. Rev. D 101, 092001 (2020).

[176] Y. Suzuki, Master’s Thesis, Nagoya University (2019).

[177] T. Fukuda, “Measurement of charged particle ionisation loss with grain counting in the OPERA emulsion films”, OPERA Note 179 (2015).

[178] P. Stowell et al. (MINERνA Collaboration), “Tuning the GENIE pion production model with MINERvA data”, Phys. Rev. D 100, 072005 (2019).

[179] M. F. Carneiro et al. (MINERνA Collaboration), “High-Statistics Measurement of Neutrino Quasielastic-like Scattering at ⟨Eν⟩=∼6 GeV on a Hydrocarbon Target”, Phys. Rev. Lett. 124, 121801 (2020).

[180] R. Gran et al., “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV”, Phys. Rev. D 88, 113007 (2013).

[181] A. Bodek and T. Cai, “Removal energies and final state interaction in lepton nucleus scattering”, Eur. Phys. J. C. 79, 293 (2019).

[182] T. Yang et al., “A hadronization model for few-GeV neutrino interactions”, Eur. Phys. J. C 63, 1 (2009).

[183] E.S.P. Guerra et al., “Measurement of σABS and σCX of π ± on carbon by Dual Use Experiment at TRIUMF (DUET)”, Phys. Rev. C 95, 045203 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る